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ABSTRACT 
 

The calculation of a confidence interval, which together with the hypothesis testing is the best known procedure of inferen-
tial statistics, has as result the probability that a certain statistical parameter is contained in a certain part of the real line. How-
ever, this result does not enjoy of unanimity because it is widely believed the not be strictly a probability and that must be 
called only confidence. To this is added the perplexity of being able to replace, as is highlighted in the article, the said prob-
ability with many other equally reliable. 

These uncertainties are tackled by distinguishing, among all those of the same event, only one probability true and therefore 
not merely conventional, and then choosing, as result of the determination of a confidence interval, the true inherent probabil-
ity which, although it is not exactly calculable, however is unlimitedly approximable. 

For this purpose, it is preliminarily dedicated much care in defining the symbology and the concepts of logic and set theory 
needed for the subsequent deductions, substantially taking again notions of [1] such as the original algorithmic definitions of 
relations and operations between sets, the unusual formulation concerning the equality between the intersection of products and 
the product of intersections, and an expanded form of the important tautology that includes the known “law of contraposition”. 

The treatment of events and probabilities exposed in [1] is summarized, simplified and integrated by new decisive positions. 
It is thoroughly analyzed the event constituted by the happen an unknown constant into a certain part of the real line and its 
probability, because fundamental for the treatment of the confidence interval which is then deduced and specified in detail for 
the two cases, of great importance in the experimental sciences, that are had when the statistical parameter is the mean or the 
variance of a normal random variable. 

 
 
1. INTRODUCTION 
 

The calculation of a confidence interval is, together with the hypothesis testing, the more known procedure of inferential statis-
tics. This procedure determines, by means of a sample, a confidence (i.e. probability) that a parameter of the inherent population is 
contained in an arbitrary part (e.g. interval) of the real line. 

However the perplexity of this probability is immediately revealed by the fact that the replacement of the said sample with an its 
subset determines a probability generally different and equally credible of the same event. Moreover many authors believe that the 
confidence in question is not a real probability (but, in truth, with arguments that do not seem decisive in the face of logical coher-
ence of the following deductions). 

In this work a remedy to this situation is achieved by defining a probability that, among all those of the same event, stands out as 
true and hence not is merely conventional, and that in the case of the confidence interval, also if not is exactly calculable, is how-
ever unlimitedly approximable. 
 
 
1  PRELIMINARIES OF LOGIC AND SET THEORY 
 

In relation to the following logical concepts, reference is made to [1], [2], [3], [4]. 
A proposition is a set of graphic symbols. A name is a proposition that relates and represents a certain object, which alone ex-

presses a meaning (e.g. “home”) or not (e.g. “A”), and which attributes to such object the properties indicated by its eventual mean-
ing. An object is identified by the set of all its properties. 

An A ≡ B affirms that A and B are two names of a same object and thereby reciprocally replaceable. Consequently an A ≡ B im-
plies that A has also the possible meaning of B (and vice versa). 

A pairing of two names A and B is a third name (e.g. AB) that has both meanings of the other two, therefore if A has a meaning 
then this is also of AB (and analogously for B). 

In identifying the members of an expression, each “≡” is considered, coherently with the parentheses, at last (and analogously 
“ ”, “=”, “≠”). Is intended Ş〈ş〉 ≡ Şş,  ≡ AND ≡ “conjunction”,  ≡ OR ≡ “inclusive disjunction”,  ≡ XOR ≡ “exclusive disjunction”. 

Being P, PA e PB three propositions, is meant, coherently with the use of parentheses “{}” or “⎨⎬“ to delimit respectively a ge-
neric proposition or that defines an event, ⎨P⎬ ≡ “P is true”, ¬⎨P⎬ ≡ “P is false”, ¬P the proposition true if ¬⎨P⎬ and false if ⎨P⎬, 
{PA ≡ PB} ≡ {¬PA ≡ ¬PB}, 
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{PA⏐PB} ≡ “PA subjected to the condition PB” ≡ “PA of which PB” ≡ “PA where PB” 

“Is implicit PB” ≡ {PA ≡ {PA⏐PB}; ∀PA} (1)
 
and P〈PB ¦ PA〉 a set of propositions from which is logically deducible PB being such propositions all true except PA that can be true 
or false. 

Indicating  and → the two logical connectives called respectively entailment or logical implication or logical consequence 
and material conditional or material implication or material consequence, is placed 
 

{PA  PB} ≡ {PB  PA} ≡ ∃P〈PB ¦ PA〉 ≡ “PB is logically deducible from PA” ≡ “An argumentation leads from PA to PB” ≡  

“PB is logically demonstrable starting from PA” ≡ “PB is a logical consequence of PA” 

{PA  PB} ≡ {PA  PB}  {PA  PB}             {PA → PB} ≡ {PB ← PA} ≡ {⎨PA⎬  ⎨PB⎬}” ← {PA  PB} 

{PA ↔ PB} ≡ {PA → PB}  {PA ← PB} ≡ {⎨PA⎬  ⎨PB⎬} ≡ {PA ≡ PB} (2)

{from: A1; A2;…; Ai; follows B0▫□1▫B1▫□2▫B2…▫□i▫Bi▫□i+1▫Bi+1…▫□i+j▫Bi+j}≡{A1 → {B0▫□1▫B1}; A2 → {B1▫□2▫B2};…; Ai → {Bi−1▫□i▫Bi}} 
 
where: each of {▫□1,▫□2▫,…,▫□i+j} is a generally different relational symbol, as for example one of {≡, ,=,≠}; {▫□i+1▫Bi+1…▫□i+j▫Bi+j} 
may be absent and if is present the validity of its presence is considered evident; each of {A1,A2,…,Ai} is replaced by symbol “þ” 
when is considered evident (or is highlighted after) the validity of the corresponding element of 
{{B0▫□1▫B1},{B1▫□2▫B2},…,{Bi−1▫□i▫Bi}}. 

A PA → PB is a P〈PB ¦ PA〉 of which is considered conventionally only PA, in the sense that all its propositions certainly true (i.e. 
all except PA) are implicitly treated as such and are then contextually ignored as obvious. This highlights immediately 
{PA → PB} → ∃P〈PB ¦ PA〉. Moreover this identity of PA → PB and the always possible faculty of considering as said conventionally 
the only PA of a P〈PB ¦ PA〉 show also ∃P〈PB ¦ PA〉 → {PA → PB}. Therefore is had PA → PB ≡ ∃P〈PB ¦ PA〉. This and 
PA  PB ≡ ∃P〈PB ¦ PA〉 entail PA → PB ≡ PA  PB. 

In conformity with the (2.1.1.1) of [1] is had 
 

PA → PB ≡ ¬PB → ¬PA ≡ “⎨PA⎬ is sufficient for ⎨PB⎬” ≡ “⎨PB⎬ is necessary for ⎨PA⎬” ≡ “⎨PB⎬ if ⎨PA⎬” ≡ “⎨PA⎬ only if ⎨PB⎬” ≡  

{PA ≡ {PA⏐PB}} ≡ {PB; ∀PA} ≡ ∃P〈PB ¦ PA〉 ≡ “from PA follows PB” ≡ “PA entails PB” ≡ “PA show PB” ≡ “PA gives rise to PB” ≡  

“PA highlights PB” ≡ “PA implies PB” ≡ “PB is due to PA” ≡ “PB is obtainable from PA” ≡ “PB is a direct consequence of PA” (3)
 
whose PA → PB ≡ “⎨PA⎬ is sufficient for ⎨PB⎬” ≡ “⎨PB⎬ is necessary for ⎨PA⎬” is in [5], whose parentheses “⎨” and “⎬” can evi-
dently be removed without risk of misunderstandings, and that, on the basis of PA → PB ≡ PA  PB, includes the tautology 
PA  PB ≡ ¬PB  ¬PA known as law of contraposition (a tautology is a proposition always true anyway are changed its variable ar-
guments). 

The (3) and (2) give rise to 
 

“PA is necessary and sufficient for PB” ≡ “PA if and only if PB” ≡ “PA is equivalent to PB” ≡ “PA means PB” ≡ {PA ≡ PB} (4)
 
whose subscripts are exchangeable in each of the four members. 

The (3) entails that PA → PB and ¬⎨PB⎬ give rise to ¬⎨PA⎬, and hence entails also the kind of argumentation known as demon-
stratio per absurdum and consisting in the deduce ⎨PA⎬ from ¬PA → PB and ¬⎨PB⎬ or ¬⎨PA⎬ from PA → PB and ¬⎨PB⎬ (and con-
sistent  thus ultimately in the establish false a PA which implies a PB false). 

Is implicit 
 

Æ〈A⏐ B⏐ C〉 ≡ {the being A a specification of B of which C} 
 
where “⏐ C” may be absent causing so the absence of “of which C”. 

It is said that B is a specification of A for understand that B has all the properties of A. So, on the base of first three paragraphs of 
this section, AB is a specification of A if this name has a meaning. From: this; (2.1.1.3) of [1]; follows 
 

Æ〈A⏐ B〉 ≡ {A ≡ {A  B}} ≡ {A → B} (5)
 
where is intended that A is a name which has a meaning. 

In relation to the following concepts of set theory reference is made to [1], [6], [7], [3], [8]. 
Intending {şi; i=1,i} ≡ {ş1,ş2,…şi } ≡ i=1,i(şi), a sequence and a set, both made up of i elements, are respectively indicated 

(şi; i=1,i) and {şi; i=1,i}, and they differ because in the second case it is irrelevant to the order defined by {a < b} ≡ {şa precedes şb} 
and called sequential such as the one typically own of every sequence. Therefore, a sequence is also a set but not vice versa. Is in-
dicated {ş P} a set consisting of all the different specifications of ş contextually possible when there is the condition P. Is implicit 
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{i=1,i}≡{i; i=1,i}. 
Is meant N〈A〉 the numerosity of the set A i.e. the number of elements that constitute A, 〈A〉 ≡ {ş⏐ş∈A},¬A the set of elements 

that do not belong to A, ∅ the empty set since N〈∅〉 = 0, ¬∅ the set constituted by each element. 
The equality of the sets A and B is indicated A = B and affirms that every element of A is also a element of B and vice versa. The 

addition of A and B is the set indicated A + B and constituted by all the elements of A and all the elements of B. The intersection of A 
and B is the set indicated A ∩ B and constituted by each element that belongs both to A and B. The difference between A and B is the 
set indicated  A − B and constituted by each element of A that do not also belongs to B. The union of A and B is the set indicated 
A ∪ B and constituted by each element that belongs to A but not to A ∩ B, or to B but not to A ∩ B, or to A ∩ B. The Cartesian product 
of A and B is the set indicated A × B and constituted by each different pair which can be made by choosing its elements respectively 
belonging to A and B. 

These definitions, intending A ≡ {Ah; h=1,h} and B ≡ {Bk; k=1,k}, are specified by 
 

{A = B} ≡ {iABh=1; h=1,h}  {iBAk=1; k=1,k}             A ∩ B ≡ {{Ah⏐iABh=1}; h=1,h}             A − B ≡ {{Ah⏐iABh=0}; h=1,h} 

A ∪ B ≡ {A + B} − {A ∩ B} (6)
 
whose {iABh; h=1,h} is determined by the following steps (and similarly {iBAk; k=1,k}): 
• it is placed {iABh = 0; h=1,h}; 
• they are carried out the N〈B〉 iterations indicated by {k=1,k}; 
• at the k-th iteration is searched for a h∈{h=1,h} that verifies the {iABh = 0,Ah ≡ Bk} and is placed iABh = 1 if there is a such 

{h∈{h; h=1,h}⏐iABh = 0,Ah ≡ Bk}. 
A A ∩ B ≠ ∅ implies that at least one of the two sets {A,B} is the addition of a subset whose elements are also elements of the 

other set and of another subset that does not has this property. Being then such addition and A ∩ B ≠ ∅ respective specifications of 
PB and PA in (3), is had a demonstratio per absurdum of A ∩ B = ∅ if the addition in question must be deemed to be false because it 
is unjustifiable the inherent distinction between elements of a same set. 

Is had 
 

{A ⊆ B} ≡ {A = A ∩ B} ≡ { B = A ∪ B} (7)
 

A permutation of N elements is one of their different N! possible sequences. Intending 
 

i=1,i(şi) ≡ ş1 □ ş2 □ … □ şi             {,□} ≡ {{Σ,+}  {Π,⋅}  { , }  { , }  { , }  {∩,∩}  {∪,∪}  { , }} 
 
i=1,i(şi) has the commutative property (i.e. i=1,i(şi) ≡ i=1,i(şP〈i〉) with (Pi; i=1,i) any one of the i! permutations of (i=1,i)) and associa-
tive, with the exception of the case {,□}≡{Π,⋅} which has the only associativity if every şi is a set. 

De Morgan's laws in propositional logic and set theory are 
 

¬ k=1,k(şk) ≡ k=1,k(¬şk)             ¬ k=1,k(şk) ≡ k=1,k(¬şk)             ¬∪k=1,k(Ak) = ∩k=1,k(¬Ak)             ¬∩k=1,k(Ak) = ∪k=1,k(¬Ak) (8)
 

The symbols “ ” and “ ” are specifications of the respective “ ” e “∪”. The Æ〈 ⏐ 〉, (5) and the first two of (8) give rise to 
the first two of 
 

¬ k=1,k(şk) → k=1,k(¬şk)             k=1,k(¬şk) → ¬ k=1,k(şk)             ¬ k=1,k(şk) → ∩k=1,k(¬şk)             k=1,k(¬şk) → ¬∩k=1,k(şk) (9)
 
whose second two are deduced in the way obviously analogous. The ¬ş ≡ ş and ş ≡ ¬ş they highlight how, in each of (8) and (9), 
{şk,¬şk} can be substituted by {¬şk,şk}. 

Being the {Ak; k=1,k} k sets, is had ∩k=1,k(Ak) ⊆ ∪k=1,k(Ak), k=1,k(A) ≡ A of which  ≡ ∩  ∪, and k=1,k(Ak) a ∪k=1,k(Ak) of 
which {Aa ∩ Ab = ∅; ∀{a,b} ⊆ {k=1,k}}. 

From: (7); {A = B} ≡ {¬A = ¬B}; fourth of (8); (7); follows 
 

{A ⊆ B} ≡ {A = A ∩ B} ≡ {¬A = ¬{A ∩ B}} ≡ {¬A = {¬A ∪ ¬B}} ≡ {¬B ⊆ ¬A} (10)
 

In the following are treated (with reference to [9] and [10]) dispositions, permutations and combinations “simple” i.e. “without 
repetitions”. A disposition of class K of N objects is a sequence of K elements of a set consisting of N elements, so two dispositions 
may also differ only for the respective sequential orders. Instead a combination of class K of N objects is a subset of numerosity K 
of a set of numerosity N, so the sequential order of the elements of a combination is irrelevant as in the case of the sets. A disposi-
tion of class N of N objects is called also permutation, and a disposition of class K of N objects is also called permutation of N ob-
jects taken K at a time. The respective number of all the possible different dispositions and combinations of class K of N objects is 
N!/(N − K)! and Б〈N,K〉 with the second which is the binomial coefficient of which Б〈N,K〉 ≡ N! / ((N−K)!⋅K!)). 

Calling k〈c,b,a〉 the a-th element of the b-th different combination of class c of the {k=1,k}, is had 
 

{{kcba; a=1,c}; b=1,Б〈k,c〉} ⇔ {{k=1,k} − {kcba; a=1,c}; b=1,Б〈k,c〉} ≡ {{kcba; a=1,k − c}; b=1,Б〈k,k − c〉} (11)
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The (2.2.36) and (2.2.37) of [1] affirm the respective 
 
N〈∪k=1,k(Ak)〉 = Σc=1,k((−1)c+1⋅Σb=1,Б〈k,c〉(N〈∩a=1,c(Ak〈c,b,a〉)〉))             N〈 k=1,k(Ak)〉 = Σk=1,k(N〈Ak〉) (12)

 
The k=1,k(A) ≡ A entails N〈k=1,k(A)〉 = NA which is coherent with the first of (12) and the verify Σc=1,k((−1)c+1⋅Σb=1,Б〈k,c〉(1)) =  

Σc=1,k((−1)c+1⋅Б〈k,c〉) = 1. 
Inherently the h⋅k  sets {Ahk; h=1,h; k=1,k}, in section 2.2 of [1] is had ∩h=1,h(Πk=1,k(Ahk)) ⊇ Πk=1,k(∩h=1,h(Ahk)) and (2.2.30) i.e. 

 
¬∃{ ş ş ≡ ş; ş∈Aac  ≠ ş ş ≡ ş; ş∈Abc ; ş∈Aac; ş∈Abc; {a,b} ⊆ {h=1,h};c∈{k=1,k}} →  

{∩h=1,h(Πk=1,k(Ahk)) = Πk=1,k(∩h=1,h(Ahk))} (13)
 
which both can result from computer verifications if each Ahk is a finite set, while (13) can result by representing the products as 
rectangular parallelepipeds k-dimensional if each Ahk is an interval of real numbers. 

A univocal (i.e. non-injective and surjective) correspondence between A and B is a set of NA pairs indicated A ⇒ B and defined by 
a A ⇒ B ≡ {Ah,Bk〈h〉; h=1,h} of which {kh∈{k=1,k}; h=1,h}, {k∈{kh; h=1,h}; k=1,k}. Therefore a A ⇒ B makes to correspond to each 

〈A〉 a only 〈B〉 and in such pairs appear all the elements of A and B. 
A bijection, i.e. a biunivocal correspondence, i.e. a one-to-one (injective) and onto (surjective) correspondence, between A and B 

of which NA = NB is a set of NA pairs indicated A ⇔ B and defined by a A ⇔ B ≡ {Ah,Bk〈h〉; h=1,h} of which {kh; h=1,h} = {k=1,k}. 
Therefore a such A ⇔ B makes to correspond to each 〈A〉 a only 〈B〉 and vice versa. 
 
2  EVENTS AND PROBABILITY 
 

For the following concepts of probability and statistics are referred [1], [11], [12], [6], [13], [14], [15], [7], [16], [17]. This sec-
tion summarizes, simplifies and integrates the section 3 of [1] for present purposes. 

A event E is biunivocally associated to its set of modalities M〈E〉 whose elements are all the different modalities with which E 
can occur namely all the different possibilities that E has to happen. Is underlined the name of an event, with exclusion of sub-
scripts and prefix “¬”, to indicate its set of modalities, in the sense of E ≡ ME and ¬EA ≡ M〈¬EA〉. The elements of E are modalities 
mutually exclusive of a single happening: an E occur with (i.e. “as”) a only 〈E〉 that is indicated M〈E〉 and this property is called 
“uniqueness of ME”. A 〈E〉 can be considered as a set of modalities which has an only element and that is then own of the event 
constituted by the happening of such element. 

The event ¬E happens if E does not happen but could happen, E∅ is the event impossible because E∅ = ∅. 
A name of an event also means its happen that in turn means its truth intended as alternative to the falsity established by its not 

happen. Therefore is intended E ≡ “the happen of E” ≡ ⎨E⎬. 
For two events A and B, is had {A = B} ≡ {A ≡ B}. An A  B has like sufficient condition the happen of A and B in different pla-

ces or times and, if is due only to this condition, A and B are two different happenings of the same event. 
A A  B affirms that the happen of A implies the happen of B and is a univocal correspondence between A and a subset of B, 

constituted by pairs such that the properties of first element are agree in asserting that its happen implies the happen of the second. 
So A  B means that the happen of each 〈A〉 entails the happen of a only 〈B〉 being such 〈A〉 and 〈B〉 the elements respectively 
first and second of one of said pairs, and is had 
 

{A  B} ≡ {{A ⇒ b} ⏐b ⊆ B} (14)
 
where the subscript “ ” indicates a univocal correspondence of the particular type just said. 

Generally a name of a proposition does not mean also the happening of the event consisting in the being true such proposition. 
Instead a name of an event always means also its happening and its “truth” in the sense of E ≡ “the happen of E” ≡ ⎨E⎬. Coherently 
with this and PA → PB ≡ PA  PB (in section 1) is implicit that PA → PB is specifiable as A  B. 

Therefore in particular (5) entails {A  B} ≡ Æ〈A⏐ B〉. 
The (14) and A  B imply a1  b and b  a2 of which a1∈A, b∈B, a2∈A (and N〈M〈a1〉〉 = N〈b 〉 = N〈a2〉 = 1). The uniqueness 

of M〈A〉 and this be a2 implied by a1 show that a1 and a2 are a same 〈A〉 i.e. a1 ≡ a2 ≡ MA, following so a {A  B} ≡ {A ⇔ B}  
whose second member is a bijection constituted by pairs such that the properties of both elements agree that the happen of one im-
plies the happen of the other. 

The (7) highlights how A ⊆ B entails that A happen as a 〈A ∩ B〉, and so coherently with second of (6) highlights the first two 
members of 
 

{A ⊆ B} → {M〈A〉 ≡ {M〈A〉 ⏐M〈A〉 ≡ M〈B〉}} → {A  B} (15)
 

From: this; uniqueness of ME (for which ME is in both cases a same modality); (15) and (2); follows 
 

{A ⊆ E,B ⊆ E} → {{M〈A〉 ≡ {M〈A〉⏐M〈A〉 ≡ M〈E〉},{M〈B〉 ≡ {M〈B〉⏐M〈B〉 ≡ M〈E〉}} → {{A  B} → {A ⊆ B}} ≡  

{{A  B} ≡ {A ⊆ B}} (16)
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From (2) follows {A  B} ≡ {A ≡ B} which, for {A ≡ B} ≡ {A = B} and {A  B} ≡ {A ⇔ B} , gives rise to 
{A = B} ≡{A ⇔ B} . This is confirmed by the first of (6) and by the said properties of {A ⇔ B}  which allow to consider each 
pair as two names of the same object. 

Is placed 
 

B〈E〉 ≡ “E is a sure event” ≡ “E happens surely” ≡ “E is happened or will happen” → “is known at least a definition of E” (17)
 
and regarding its latest member is noted that ignore, voluntarily or involuntarily, an event is a mere limitation of knowledge and 
not a logical error that could make the results unreliable. 

In relation to k events {ek; k=1,k}, 〈ek; k=1,k〉 means that this events are independent namely that the set of modalities of each 
of them not is modified by the happen of any of the others. 

On the basis of the first two members of (16) and uniqueness of ME, a {A ⊆ E,B ⊆ E} implies that, if happens A, B can only hap-
pen with a M〈B〉 that verifies M〈B〉 ≡ {M〈B〉⏐M〈B〉 ≡ M〈A〉} and hence is had {A ⊆ E,B ⊆ E} → ¬ 〈A,B〉. Is furthermore evident 
〈A,B〉 → { 〈a,b〉⏐a ⊆ A,b ⊆ B}. Therefore is had 

 
{B〈E〉  ∃{A ⊆ E,B ⊆ E⏐{A,B} ⊆ {ek; k=1,k}}} → ¬ 〈ek; k=1,k〉             〈ek; k=1,k〉 → { 〈ek; k=1,k〉⏐ek ⊆ ek; k=1,k} 

〈A,B〉 → ¬{A  B} (18)
 
for which (based on (3)) a 〈ek; k=1,k〉 exists only if is ignored each E that makes true the first member of the first of (18). 

A A  B affirms, as said on the occasion of (14), that the happen of A implies the happen of a only B. This highlights 
{A  B} → ¬ 〈A,B〉 from which is deduced, for (3), 〈A,B〉 → ¬{A  B} e 〈A,B〉 → ¬{B  A}, and hence that the first member 
of (19) implies the second. Being also immediately evident the reverse implication, is had 
 

〈A,B〉 ≡ ¬{A  B}  ¬{B  A} (19)
 
2.1  Composite events 
 

Are composite events E∩, E∪, E , E, E  and E  of which E∩ ≡ ∩k=1,k(ek), E∪ ≡ ∪k=1,k(ek), 
E  ≡ k=1,k(ek) ≡ {E∪⏐ea ∩ eb = ∅; ∀a  b}, E ≡ k=1,k(ek), E  ≡ k=1,k(ek) and E  ≡ k=1,k(ek). 

The E∩ and E  both mean the happen of all the elements of {ek; k=1,k}. The E∪ and E  both mean the happen of at least one of 
the elements of {ek; k=1,k}. However these four events differ because their sets of modalities are 
 

E ≡ k=1,k(ek)             E  ≡ (ek; k=1,k) ek∈ek; k=1,k              E  ≡ k=1,k(ek) ek∈ek; k=1,k  (20)
 

thus having, in particular and with reference to (17), B〈E 〉 ≡ k=1,k(B〈ek〉). 
An E, of which E  E∅, is defined only if ∃{E⏐E ⊆ ek; k=1,k}, because vice versa the elements of Ewould not be modalities 

mutually exclusive of a single happening and would be contradicted the uniqueness of M〈E〉. An example of the absence of this 
necessary condition is obtainable with e1 ≡ k=2,k(ek), when it (i.e. ∃{E⏐E ⊆ ek; k=1,k) would not be prevented by 
{ek ∩ e1 ≡ E∅; k=2,k} but by the fact that would imply relations of type 〈E〉 ≡ 〈e1〉 ≡ 〈¬ek〉 with k ≠ 1 and so with a such 〈E〉 
that it would be impossible since e1 and ¬ek they cannot happen together. 

The first of (20) entails ek ⊆ E and so, based on first of (18), shows that only consider E gives anyway rise to ¬ 〈ek; k=1,k〉. 
The E  ≡ k=1,k(ek) (due to first of (20)) and uniqueness of each ME imply that {ek; k=1,k} are mutually exclusive when is con-

sidered E  and imply E∪ ≡ E  of {ek; k=1,k} mutually exclusive. 
From a E1, of which E1 ≡ {ek ⊆ E,ek  A; k=1,k}, is not immediately deducible E∪  A, because to the properties of a 〈ea〉 that 

contribute to determine a ea  A when it is not considered a eb, when instead is also considered eb can be added other which con-
tradict those said (this possibility will be highlighted by the example in section 3.1). So, having in each case E∩  E∪ (due to 
E∩ ⊆ E∪ and (15)) and intending E2 ≡ ¬∃{e ∪ E∪ ≠ E∪⏐e  A}, is had first of 
 

{E1 → {E∩  E∪  A}} → E3             {{E1,E2,B〈E〉} → {E∪ ≡ A}} → E3 (21)
 
where E3 (that is necessary analogously to PB of (3)) consists in being the properties of each 〈E∪〉, which are determined by the 
consider all the {ek; k=1,k}, all unanimous in implying a 〈A〉, namely in being the names of each 〈E∪〉 coherent in determining 
such implication; and it is also evident that the second follows from the first because in this E∪  A can be replaced by E∪ ≡ A if E2 
prevents of increasing N〈E∪〉 and B〈E〉. 

The only E  ≡ k=1,k(ek) makes to deduce, coherently to N〈Πk=1,k(Ak)〉 = Πk=1,k(N〈Ak〉) in (2.2.29) of [1], 
 

〈ek; k=1,k〉 ≡ {E  = Πk=1,k(ek)} ≡ {N〈E 〉 = Πk=1,k(N〈ek〉)}             ¬ 〈ek; k=1,k〉 ≡ {E  ⊂ Πk=1,k(ek)} ≡ {N〈E 〉 < Πk=1,k(N〈ek〉)} (22)
 
as well as E  ⊆ C  of which C  ≡ k=1,k(Ck) e {ek ⊆ Ck; k=1,k}. 

This E  ⊆ C  can be specified as k ⊆ C  of which k ≡ k=1,k( kk), { kk ≡ Ck; ∀k ≠ k}, kk ≡ ek, E  ⊆ k. The said meaning 
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own of both the E∩ and E  entails that ∩k=1,k( k) is the happening of all the { kk; k=1,k; k=1,k}. The definition of kk entails that 
this happen is that of all the {ek,Ck; k=1,k} which, for ek  Ck (due to (15) and ek ⊆ Ck) and {ek  Ck} ≡ {ek ≡ {ek,Ck}} (affirmed 
by (2.1.1.3) of [1]), is necessary and sufficient for the happen of E . Therefore is had ∩k=1,k( k) ≡ E . 

Substituting in this {ek; k=1,k} with {¬ek; k=1,k} is had k=1,k(¬ek) ≡ ∩k=1,k( k=1,k( kk
¬)) of which { kk

¬ ≡ Ck; ∀k ≠ k}, 
kk

¬ ≡ ¬ek, and so ¬ k=1,k(¬ek) ≡ ¬∩k=1,k( k=1,k( kk
¬)) which, for (8), becomes E  ≡ ∪k=1,k(¬ k=1,k( kk

¬)) whose ¬ k=1,k( kk
¬), if 

B〈C 〉 i.e. if C  is sure, may be replaced by k.  
Therefore if B〈C 〉 is had 

 
E  ≡ ∩k=1,k( k)             E  ≡ ∪k=1,k( k) (23)

 
of which E  ⊆ E  ⊆ C  (compliant to E∩ ⊆ E∪) and which allows to place each k in a space evidently analogous to a Cartesian 
space k-dimensional. By specifying {ek; k=1,k} as {Ck; k=1,k} in (23), these become C  ≡ ∩k=1,k(C ) and k=1,k(Ck) ≡ ∪k=1,k(C ) of 
which ∩k=1,k(C ) ≡ ∪k=1,k(C ) ≡ C  (due to k=1,k(A) ≡ A) and which therefore show k=1,k(Ck) ≡ C  that is coherent with 
B〈E 〉 ≡ k=1,k(B〈ek〉) in the sense that if B〈E 〉 each ek is implicitly present although not mentioned. 
 
2.2  Probability 
 

Are placed, coherently with (7), the first two of 
 
ρ〈A ¦ B〉 ≡ N〈A ∩ B〉 / N〈B〉             {ρ〈A ¦ B〉 = N〈A〉 / N〈B〉; ∀A ⊆ B}             ρ〈A ¦ B〉 + ρ〈¬A ¦ B〉 = 1 (24)

 
whose third is affirmed by the (3.2.1.2) of [1]. 

Is meant  ≡ (−∞,∞) with ∞ a number unlimitedly large. Coherently with (24) and (4.2.2) of [1] is had 
 
ρ〈a ≤ s ≤ b ¦ s∈ 〉 = N〈M〈a ≤ s ≤ b〉〉 / N〈M〈s∈ 〉〉 = ∫a,b(D〈s〉(x)⋅dx) = ∫−∞,b(Ds(x)⋅dx)−∫−∞,a(Ds(x)⋅dx) (25)

 
where s is a random variable and Ds(x) its probability density function (PDF). In such Ds(x) x has also the identity of value of s. 

It is understood IPM ≡ {the first member of}. From: (24), E  ⊆ C ; 〈ek; k=1,k〉, (22); (24), ek ⊆ Ck; follows IPM 
 

{ρ〈E  ¦ C 〉 = N〈E 〉 / N〈C 〉 = Πk=1,k(N〈ek〉 / N〈Ck〉) = Πk=1,k(ρ〈ek ¦ Ck〉)} ← 〈ek; k=1,k〉 (26)
 

With reference to (17), is placed 
 

〈E〉 ≡ A〈E〉  B〈E〉  C〈E〉             A〈E〉 ≡ “E is identified univocally” 

C〈E〉 ≡ “all the elements of E have the same potentiality to be the modality with which happens E” 
 
which makes evident 〈 k=1,k(ek)〉 ≡ k=1,k( 〈ek〉) and for {PA  PB} → PB, tautology known as conjunction elimination, 

〈E〉 → B〈E〉. 
Calling 〈A〉 the probability of A, is had 

 
〈B〉 → { 〈A〉 ≡ 〈A ∩ B〉 = ρ〈A ¦ B〉}             〈A〉 + 〈¬A〉 = 1 (27)

 
whose second follows from the definition of ¬E. 

The A ⊆ B implies N〈A ∩ C〉 ≤ N〈B ∩ C〉. This and first of (27) give rise to the only { 〈C〉, A ⊆ B} → { 〈A〉 = ρ〈A ¦ C〉 ≤  
ρ〈B ¦ C〉 = 〈B〉}. Nevertheless first of (27) and the only meaning of A  B also allow 
 

{ 〈C〉, A  B} → {ρ〈A ¦ C〉 = 〈A〉 ≤ 〈B〉} (28)
 

The (27) indicates that 〈A〉 does not have nature absolute and universal, but relative and contingent as that of the inherent B. 
Indeed (27) makes possible all the generally different 〈A〉 that correspond to the different choices of B, by following that each of 
these probabilities has the eminently conventional nature of the being inherent only the particular context determined by choice of 
corresponding B. 

However, being evident that 〈A〉 is more significant if B represents better the context in which are interesting information a-
bout A and in particular if  subsists A ⊆ B for which intervenes the entire A and not the only A ∩ B of the case A ≠ A ∩ B, is also 
evident that a 〈A〉 can be considered as the only true and not merely conventional probability of A, and in this case is indicated 
P〈A〉, if B is the event which has the lesser N〈B〉 compatible with A ⊆ B and 
 

¬∃PAB  {{¬B ⊆ ¬A}→{ 〈¬B〉 ≡ 〈¬A〉}} (29)
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where PAB is a set of propositions from which is logically deducible 〈¬B〉 ≡ 〈¬A〉, with ¬B ⊆ ¬A that is deduced from A ⊆ B and 
(10), and being such (29) equivalent to the absence of every relation that may be involved between A and ¬B by their respective 
properties. Such evidence, i.e. the definition just said of P〈A〉, is based on the exclude any modality that has no relation with A and 
vice versa in the include any modality that has relation with A. Coherently with this, in (28) is had 〈B〉 ≡ P〈B〉 if no relation be-
tween ¬C and B may be involved from their properties. 
 
2.3  An application of composite events 
 

Is considered B〈Q 〉 of which Q  ≡ d=1,d(qd), qd ≡ pd  ¬pd, 〈qd; d=1,d〉, and the {qa  qb; ∀{a,b} ⊆ {k=1,k}} due to the sole 
fact that {d=1,d} indicates d several days i.e. with each qa  qb caused only by the happen qa and qb in the respective and different 
days a-th and b-th. This implies both {qd; d=1,d} as d happenings of same q and {pd; d=1,d} as d happenings of same p, thus hav-
ing also q ≡ p  ¬p. 

Placing the 
 

R kb ≡ d=1,d(ru〈k,b,d〉)             {ru〈k,b,d〉 ≡ pu〈k,b,d〉; d=1,k}             {ru〈k,b,d〉 ≡ ¬pu〈k,b,d〉; d=k+1,d}             {ukbd; d=1,d} = {d=1,d} (30)
 
is had 
 

{R kb ⊆ Q ,R kb  Pk ≡ {in d days happens k times p and d − k times ¬p}; b=1,NR} (31)
 
whose R kb ⊆ Q  is due to rd ⊆ qd, and of which is had NR = d! as immediate consequence of the being (ukbd; d=1,d) a b-th permuta-
tion of {d=1,d} affirmed by the last of (30). 

Such NR = d! is confirmed by the evident possibility of placing NR = NRA⋅NRB with NRA the  number of dispositions of class k of  d 
objects (i.e. NRA = d!/(d − k)!) and NRB the number of permutations of d − k objects (i.e. NRB = (d − k)!), or vice versa with NRA the  
number of dispositions of class d − k of  d objects (i.e. NRA = d!/k!) and NRB the number of permutations of k objects (i.e. NRB = k!). 

From: Æ〈B〈Q 〉,(31)⏐ first member of (21)〉; the mere hypothesize the possibility of cases such as {R ka ≡ R kb⏐a  b}, commuta-
tivity and associativity of the union, {A ≡ B} → {A  B ≡ A}; follows 
 

Pk ≡ ∪b=1,N〈R〉(R kb) ≡ ∪b=1,N〈S〉(S kb) ≡ b=1,N〈S〉(S kb) (32)
 
of which {S kb; b=1,NS} ⊆ {R kb; b=1,NR} with NS the maximum compatible with {S kr  S ks; ∀{r,s} ⊆ {b=1,NS}}, and whose last 
member is due to mutual exclusivity of such {S kb; b=1,NS} which is substantially highlighted by the fact that each of these NS e-
vents is a specification of Q  whose happen excludes that of any other. 

From: last of (30); commutativity of i=1,i(şi), (4); follows 
 

{{ukmd; d=1,k} ≠ {uknd; d=1,k}} ≡ {{ukmd; d=k+1,d} ≠ {uknd; d=k+1,d}} ≡ {R km  R kn} 
 

This and (11) give rise to 
 

{S kb; b=1,NS} ⇔ {{dkba; a=1,k}; b=1,Б〈d,k〉} ⇔ {{dkba; a=1,d − k}; b=1,Б〈d,d − k〉} 
 
where d〈k,b,a〉 is the a-th element of the b-th combination of class k of the {d=1,d}, {dkba; a=1,d − k} = {d=1,d} − {dkba; a=1,k}. 

So every S kb corresponds to a different combination of class k (and/or d − k) of the elements of {d=1,d} as is specified by 
 

NS = Б〈d,k〉             S kb ≡ a=1,k(pd〈k,b,a〉)  a=1,d−k(¬pd〈k,b,a〉) (33)
 

From: Q  ≡ d=1,d(qd), 〈qd; d=1,d〉, (22); N〈qd〉 = N〈q〉 due to being the {qd; d=1,d} d happenings of a same q; follows 
N〈Q 〉 = Πd=1,d(N〈qd〉) = (N〈q〉)d. Besides 〈qd; d=1,d〉, {pd ⊆ qd,¬pd ⊆ qd} (due to qd ≡ pd  ¬pd), and second of (18) entail 
〈{pd〈k,b,a〉; a=1,k},{¬pd〈k,b,a〉; a=1,d − k}〉. From: this, (22), second of (33); N〈pd〉 = N〈p〉 e N〈¬pd〉 = N〈¬p〉 due to being the 

{pd; d=1,d} d happenings of a same p; follows 
 
N〈S kb〉 = Πa=1,k(N〈pd〈k,b,a〉〉)⋅Πa=1,d−k(N〈¬pd〈k,b,a〉〉) = (N〈p〉)k⋅(N〈¬p〉)d−k 

 
From: S kb ⊆ Q  (due to {S kb; b=1,NS} ⊆ {R kb; b=1,NR} and R kb ⊆ Q ), second of (24); previous expressions of N〈Q 〉 and 

N〈S kb〉; {p ⊆ q,¬p ⊆ q} (due to q ≡ p  ¬p); third of (24); follows 
 
ρ〈S kb ¦ Q 〉 = N〈S kb〉 / N〈Q 〉 = (N〈p〉 / N〈q〉)k⋅(N〈¬p〉 / N〈q〉)d−k

 = (ρ〈p ¦ q〉)k⋅(ρ〈¬p ¦ q〉)d−k
 = (ρ〈p ¦ q〉)k⋅(1 - ρ〈p ¦ q〉)d−k (34)

 
From: (32); ρ〈E  ¦ B〉 = Σk=1,k(ρ〈ek ¦ B〉) affirmed by (3.2.1.11) of [1]; (34), first of (33); folows 

 
ρ〈Pk ¦ Q 〉 = ρ〈 b=1,N〈S〉(S kb) ¦ Q 〉 = Σb=1,N〈S〉(ρ〈S kb ¦ Q 〉) = Б〈d,k〉⋅(ρ〈p ¦ q〉)k⋅(1 - ρ〈p ¦ q〉)d−k (35)
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The (32) and S kb ⊆ Q  imply Pk ⊆ Q , and moreover the definition of Pk (in (31)) highlights 
 

{Ph  k ≡ {in d days p happens at least  k times}; h=k,d} 
 

From: this and B〈Q 〉, (21), {Pa ∩ Pb = ∅; ∀{a,b} ⊆ {h=k,d}}; þ; (35); follows 
 
ρ〈 k ¦ Q 〉 = ρ〈 h=k,d(Ph) ¦ Q 〉 = Σh=k,d(ρ〈Ph ¦ Q 〉) = Σh=k,d(Б〈d,h〉⋅(ρ〈p ¦ q〉)h⋅(1 - ρ〈p ¦ q〉)d−h) (36)

 
The first of (27) gives rise to 

 
〈Q 〉 → { 〈Pk〉 = ρ〈Pk ¦ Q 〉, 〈 k〉 = ρ〈 k ¦ Q 〉} 

 
which together with (35) and (36) expresses two probabilities notable as a result of the application of properties of composite e-
vents. 
 
 
3  THE PROBABILITY OF AN UNKNOWN CONSTANT 
 

A G∈R, where G is a quantity, implies R ⊆  and means that G has a value equal to that of one of the elements of the set R. By 
calling 〈G〉 the set of different values that can have G (and intending that a subscript can also represent a character string empty 
i.e. absent), is had ⎨G∈ G⎬A ≡ ⎨G∈ ⎬A and ⎨G∈¬ G⎬A ≡ ⎨G∈¬ ⎬A ≡ E∅. Is considered implicit that a ⎨G∈R⎬A can happen only if 
B〈⎨G∈ ⎬A〉 and so is had ¬⎨G∈R⎬A ≡ ⎨G∈  − R⎬A. Being evident the first of 
 

{Ra ⊆ Rb} ≡ {M〈⎨G∈Ra⎬A〉 ⊆ M〈⎨G∈Rb⎬A〉}             m=1,m(⎨G∈Rm⎬A) ≡ ⎨G∈m=1,m(Rm)⎬A (37)
 
the second of them is shown by the first of (20), uniqueness of ME (said in second paragraph of section 2) and by the fact that a 

〈M〈G∈R〉〉 regards a only value of G. 
From: A = {A ∩ B} ∪ {A ∩ ¬B} (in (2.2.23) of [1]); A ∩ B = A − ¬B (in (2.2.7) of [1]); second of (37); ⎨G∈¬ ⎬A ≡ E∅; 

¬⎨G∈R⎬A ≡ ⎨G∈  − R⎬A; follows 
 

⎨G∈¬R⎬A ≡ ⎨G∈{  ∩ ¬R} ∪ {¬R ∩ ¬ }⎬A ≡ ⎨G∈{  − R} ∪ {¬R ∩ ¬ }⎬A ≡ ⎨G∈  − R⎬A ∪ ⎨⎨G∈¬R⎬A ∩ ⎨G∈¬ ⎬A⎬ ≡  

⎨G∈  − R⎬A ≡ ¬⎨G∈R⎬A 
 

The ⎨G∈¬R⎬A ≡ ⎨G∈  − R⎬A entails that in relation to a ⎨G∈¬R⎬A is implied the conventional ¬R ≡  − R. From: this; R ⊆ ; 
follows R  ¬R = R  {  − R} = . 

How much a moment ago and second of (37) give rise to 
 

{⎨G∈ ⎬A ≡ ⎨G∈R⎬A  ¬⎨G∈R⎬A, ¬⎨G∈R⎬A ≡ ⎨G∈¬R⎬A, ¬R ≡  − R} ← B〈⎨G∈ ⎬A〉 (38)
 

Is intended that X is a an unknown constant and are placed its e ≡ ⎨X∈R⎬, ē ≡ ⎨X∈ ⎬. The being X a constant entails that eA not is 
the happening of one of the values of X which are elements of R when eA would be an addition of subsets each corresponding to a 
different 〈R〉, but it is instead the happening of a set R of which is element the only value that can have X and concerning therefore 
each 〈eA〉 this same value. However this neither influences the information expressed by eA on X nor prevents a 〈ēA,ēB〉. 

The second of (37) entails ⎨∩m=1,m(⎨G∈Rm⎬A)⏐∩m=1,m(Rm) = ∅⎬ ≡ ⎨G∈∅⎬A whose second member is impossible (i.e. E∅) for 
which are considered impossible also events such as its first member of which on the other hand is not definable any non-zero 
probability. Instead the events of type ⎨ m=1,m(⎨X∈Rm⎬m)⏐∩m=1,m(Rm) = ∅⎬, even being able to calculate their nonzero probabili-
ties, are however neglected as rendered evidently impossible by the constancy of X and coherently with the ignore a 〈E〉 > 0 of an 
E impossible i.e. the replace it with 〈E〉 = 0 because erroneously resulting by approximate knowledge of the hypothetical happen 
of E. 

Is placed 
 

{ēA ∩ ēB ≠ ∅} ≡ {ēA ∩ ēB = {ēA  ēB}} (39)
 
because, being evident that the second member implies the first, if this does not imply the second is had an impossibility to justify 
such as that of the k-th paragraph of page x. 

From: (39), (7); (8); follows 
 

{ēA ∩ ēB = ∅} ≡ ¬{{ēA ⊆ ēB}  {ēB ⊆ ēA}} ≡ ¬{ēA ⊆ ēB}  ¬{ēB ⊆ ēA} (40)
 

Is called I a set of which I ≡ {ēt; t=1,t} and whose numerousness is maximum subordinately to the condition 
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{ēA ∩ ēB = ∅; ∀{ēA,ēB} ⊆ I} (41)
 
which, together with (40), highlights that I can not have elements of type ∪k=1,k(ēk) and ∩k=1,k(ēk) because this would prevent that t 
is a maximum. 

Coherently with (41) and et ⊆ ēt (due to first of (37)), are introduced the events ē  and e  of which 
 
M〈e 〉 ≡ t=1,t(et) ⊆ t=1,t(ēt) ≡ M〈ē 〉 (42)

 
In conformity with the first two paragraphs of section 1, ē has the meaning implicated by ē ≡ ⎨X∈ ⎬. This, on the basis of (5) 

and the paragraph that introduces it, implies ēA  ē. 
The ē  ≡ t=1,t(ēt) and ēA  ē respectively give rise to the two members of each t-th element of {ēt ⊆ ē ,ēt  ē; t=1,t} which 

specifies the E1 of (21). It is understood B〈ē 〉 which excludes any ¬ēt ≡ ⎨X∈¬ ⎬t ≡ E∅ (vice versa implicated by the second of 
(38) and B〈ēt〉), so is had  the specification of the E3 of (21) consisting of being the properties of each 〈ē 〉 coherent in the imply a 

〈ē〉. From: this and second of (21); ¬∃PA ≡ {¬PA; ∀A}; (7); follows 
 

{ē ≡ ē } ← {¬∃ē  ∪ ēA ≠ ē } ≡ {ē  ∪ ēA = ē ; ∀ēA} ≡ {ēA ⊆ ē ; ∀ēA} (43)
 
of which 
 

¬{ēA ⊆ ē } ≡ PA1  PA2  PA3             PA1 ≡ {ē  ⊂ ēA}             PA2 ≡ {ē  ∩ ēA ⊂ ē }  {ē  ∩ ēA ⊂ ēA} 

PA3 ≡ {ē  ∩ ēA = ∅} (44)
 

The PA1 and PA2 are both false since each of them implies for each {ē ,ēA} an impossibility to justify analogous to that of x-th 
paragraph of page x. Also PA3 is false because it is incoherent with the definition of I i.e. with the be t the maximum compatible 
with (41). These falsities, first  of  (44) and (43) give rise to ē ≡ ē . This and e ⊆ ē entail e ⊆ ē  for which e is constituted by all 
the elements of ē  compatible with the meaning of e and hence e ≡ e . 

From: ē ≡ ē ; first of (27); follows 
 

〈ē 〉 ≡ 〈ē〉 → { 〈e〉 = ρ〈e ¦ ē〉} (45)
 

Is placed N〈ēt〉 = ∞ on the basis of the unlimited greatness of N〈 〉 (and coherently with section 4.1 of [1]). From: second of 
(24), eA ⊆ ēA; ē ≡ ē , e ≡ e ; second of (12); N〈ēt〉 = ∞; second of (24), et ⊆ ēt; follows 
 
ρ〈e ¦ ē〉 = N〈e〉 / N〈ē〉 = N〈 t=1,t(et)〉 / N〈 t=1,t(ēt)〉 = Σt=1,t(N〈et〉) / Σt=1,t(N〈ēt〉) = t−1⋅Σt=1,t(N〈et〉 / N〈ēt〉) = t−1⋅Σt=1,t(ρ〈et ¦ ēt〉) (46)

 
The {ēA ⊆ ē  = ē ⊇ e  = e; ∀ēA} (above deducted) shows that in (45) ē  can not be replaced by a B such that N〈B〉 < N〈ē 〉, 

e ⊆ B and of which can not be deduced a 〈¬B〉 ≡ 〈¬e〉 without using {¬B ⊆ ¬e}→{ 〈¬B〉 ≡ 〈¬e〉}. Therefore the 〈e〉 of (45) 
is, according to the last paragraph of section 2.2, the only true probability of e i.e. the P〈e〉. This, (45) and (46) give rise to 
 

〈ē 〉 ≡ 〈ē〉 → {P〈e〉 = t−1⋅Σt=1,t(ρ〈et ¦ ēt〉)} (47)
 

From: 〈 k=1,k(ek)〉 ≡ k=1,k( 〈ek〉), ē  ≡ t=1,t(ēt); et  e; (28); follows 
 

〈ē 〉 ≡ t=1,t( 〈ēt〉) ≡ t=1,t(et  e, 〈ēt〉) → t=1,t(ρ〈et ¦ ēt〉 = 〈et〉 ≤ 〈e〉) (48)
 
which shows how in the absence of (47) would be impossible to have a practically useful information on the probability of e, since 
they would exist only the following two alternatives, replace 〈e〉 with a 〈et〉 or choose a 〈et〉 ≤ 〈e〉 and exclude all remain-
ing, that would involve however both a decision unjustifiably arbitrary. 

From I ≡ {ēt; t=1,t} is deducible (with any criterion) a I ≡ {ēmn; n=1,nm; m=1,m}. From this is had, coherently with ē ≡ ē , 
e ≡ e  and (42), 
 

{ēmn ⊆ ēm ⊆ ē, emn ⊆ em ⊆ e; n=1,nm; m=1,m} 
 
defined by 
 
ēm ≡ n=1,n〈m〉(ēmn)             ē ≡ m=1,m(ēm)             em ≡ n=1,n〈m〉(emn)             e ≡ m=1,m(em) (49)

 
How N〈ēt〉 = ∞ is had also N〈ēmn〉 = ∞. From: first of (49); second of (12); N〈ēmn〉 = ∞; follows 

N〈ēm〉 = N〈 n=1,n〈m〉(ēmn)〉 = Σn=1,n〈m〉(N〈ēmn〉) = nm⋅∞. From: (24), e ⊆ ē; (49); second of (12), N〈ēmn〉 = ∞; (24), emn ⊆ ēmn, 
t = Σm=1,m(nm); follows 
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ρ〈e ¦ ē〉 = N〈e〉 / N〈ē〉 = N〈 m=1,m( n=1,n〈m〉(emn))〉 / N〈 m=1,m( n=1,n〈m〉(ēmn))〉 = Σm=1,m(Σn=1,n〈m〉(N〈emn〉 / N〈ēmn〉)) / Σm=1,m(nm) =  

t−1⋅Σm=1,m(Σn=1,n〈m〉(ρ〈emn ¦ ēmn〉)) = t−1⋅Σm=1,m(nm⋅ρ〈em ¦ ēm〉) (50)
 
whose last member is due to 
 
ρ〈em ¦ ēm〉 = nm

−1⋅Σn=1,n〈m〉(ρ〈emn ¦ ēmn〉) 
 
that is deduced in the evidently analogous way. 

The (47), (46) e (50) entail 
 

〈ē 〉 ≡ 〈ē〉 → {P〈e〉 = t−1⋅Σm=1,m(Σn=1,n〈m〉(ρ〈emn ¦ ēmn〉)) = t−1⋅Σm=1,m(nm⋅ρ〈em ¦ ēm〉)} (51)
 

Is intended {ēA,ēB} ⊆ I and hence {ēA ⊆ ē ,ēB ⊆ ē } which coherently with first of (18) gives rise to B〈ē 〉 → ¬ 〈ēA,ēB〉 which 
by (3) entails 〈ēA,ēB〉 → ¬B〈ē 〉. Moreover the having deduced ē ≡ ē  implying B〈ē 〉 is equivalent, by (1), to 
{ē ≡ ē } ≡ {ē ≡ ē ⏐B〈ē 〉} which is equivalent, by (3), to ¬B〈ē 〉 → ¬{ē ≡ ē }. This gives rise to 〈ēA,ēB〉 → {ē  ē } for which 
the elements of I are grouped on the basis of mutual independence placing the 
 

I ≡ {{ēmn; n=1,nm; m=1,m}⏐¬ 〈ēmh,ēmk〉,{ 〈ēah,ēbk〉; ∀a ≠ b}} (52)
 
of which (52) → {ē  ē } whose second member is true only if is ignored ē . 

Therefore (52) (as also everything that is deduced from it) is in force only if ē  ē  i.e. is ignored ē  i.e. are ignored second and 
last of (49) as well as the {ēm ⊆ ē,em ⊆ e; m=1,m} by them implicated. 

The { 〈ēah,ēbk〉; ∀a ≠ b} of (52) entails 〈ēm; m=1,m〉 that by last of (18) and em ⊆ ēm entails 〈em; m=1,m〉. 
 
3.1  A confirmation 
 

The (23) has, coherently with (52), the specification 
 

ë  ≡ m=1,m(ëm) ≡ ∩m=1,m( m=1,m( mm))             ë  ≡ m=1,m(ëm) ≡ ∪m=1,m( m=1,m( mm)) (53)
 
of which ëm ≡ ⎨X∈Rm⎬m, { mm ≡ ēm; ∀m ≠ m}, mm ≡ ëm, ë  ⊆ ë  ⊆ Ē, being in particular Ē, of which Ē ≡ m=1,m(ēm), the specifica-
tion of C  and hence being worth Ē ≡ m=1,m(ēm) if B〈Ē〉 as it is understood in this section. 

The evident 〈em; m=1,m〉 → 〈ëm; m=1,m〉 and the said 〈em; m=1,m〉 entail 〈ëm; m=1,m〉. This and (26) imply 
 
ρ〈ë  ¦ Ē〉 = N〈ë 〉 / N〈Ē〉 = Πm=1,m(N〈ëm〉 / N〈ēm〉) = Πm=1,m(ρ〈ëm ¦ ēm〉) (54)

 
From: last of (24); first of (8); (54), ¬ëm ≡ ⎨X∈¬Rm⎬m of which ¬Rm ≡  − Rm (as can be deduced from B〈Ē〉 and (38)); follows 

 
ρ〈ë  ¦ Ē〉 = 1 − ρ〈¬ë  ¦ Ē〉 = 1 − ρ〈 m=1,m(¬ëm) ¦ Ē〉 = 1 − Πm=1,m(ρ〈¬ëm ¦ ēm〉) = 1 − Πm=1,m(1 − ρ〈ëm ¦ ēm〉) (55)

 
From: second of (53); ë  = Πm=1,m(ëm) (due to 〈ëm; m=1,m〉 and (22)); (12), the being true the first member of (13) when the 

{Ahk; h=1,h; k=1,k} are specified by { m〈c,b,a〉m; a=1,c; m=1,m}; N〈Πk=1,k(Ak)〉 = Πk=1,k(N〈Ak〉), { mm ≡ ēm; ∀m ≠ m}, mm ≡ ëm; follows 
 
N〈ë 〉 = N〈∪m=1,m(M〈 m=1,m( mm)〉)〉 = N〈∪m=1,m(Πm=1,m( mm))〉 = Σc=1,m((−1)c+1⋅Σb=1,Б〈m,c〉(N〈Πm=1,m(∩a=1,c( m〈c,b,a〉m))〉)) =  

Σc=1,m((−1)c+1⋅Σb=1,Б〈m,c〉(Πa=1,c(N〈ëm〈c,b,a〉〉)⋅Πa=c+1,m(N〈ēK〈c,b,a〉〉))) (56)
 
of which {Kcba; a=c+1,m} = {m=1,m} − {m〈c,b,a〉; a=1,c}. 

From: ë  ⊆ Ē, (24); (56), N〈Ē〉 = Πm=1,m(N〈ēm〉) (due to N〈ë 〉 = Πm=1,m(N〈ëm〉 that is implied by 〈em; m=1,m〉 e (22)); ëm ⊆ ēm, 
(24); follows 
 
ρ〈ë  ¦ Ē〉 = N〈ë 〉 / N〈Ē〉 = Σc=1,m((−1)c+1⋅Σb=1,Б〈m,c〉(Πa=1,c(N〈ëm〈c,b,a〉〉 / N〈ēm〈c,b,a〉〉))) =  

Σc=1,m((−1)c+1⋅Σb=1,Б〈m,c〉(Πa=1,c(ρ〈ëm〈c,b,a〉 ¦ ēm〈c,b,a〉〉))) (57)
 

It is remarkable the difference between (55) and (57) in expressing the same ρ〈ë  ¦ Ē〉, as well as the being the first numerically 
much more convenient because the second requires a computation time that as m increases soon becomes hardly available. More-
over, intending ∪A ≡ ∪k=1,k(Ak), the associative property of the union entails ∪A = {…{{A1 ∪ A2} ∪ A3} ∪ …Ak}, for which ∪A is the 
result of a succession of k − 1 unions between two sets and hence each of type A ∪ B of which N〈A ∪ B〉 = N〈A〉 + N〈B〉 − N〈A ∩ B〉 
(due to first of (12)). Therefore N〈∪A〉 can be defined iteratively, placing initially N〈∪A〉 = N〈A1〉 and then executing the steps indi-
cated by {k; k=2,k} and constituted by the replace, at the k-th step, N〈∪A〉 with N〈∪A〉 + N〈Ak〉 − N〈∪A ∩ Ak〉. The evident analogy, 
between first of (12) (to which are alternatives the iterations just said) and (57), makes to deduce, as alternative to this expression 
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of ρ〈ë  ¦ Ē〉, the following procedure: is placed Ρ = ρ〈ë1 ¦ ē1〉, are carried out the steps indicated by {m=2,m} and constituted by the 
replace Ρ with Ρ + ρ〈ëm ¦ ēm〉 − Ρ⋅ρ〈ëm ¦ ēm〉 at step m-th, is placed ρ〈ë  ¦ Ē〉 = Ρ at the end of these steps. The computing time re-
quired by this procedure is very near to that of (55). 

A 〈ë 〉 (as well as a 〈ë 〉) is an m-tuple { 〈ëm〉; m=1,m} element of Ē and then, being X a constant (and neglecting as impossi-
ble any {ë ⏐∩m=1,m(Rm) = ∅}), implies a 〈ë∩〉 of which ë∩ ≡ ⎨X∈∩m=1,m(Rm)⎬. Therefore is had ë   ë∩ that, for (28) and if 〈Ē〉, 
gives rise to ρ〈ë  ¦ Ē〉 ≤ 〈ë∩〉 i.e. 〈ë∩〉∈[ρ〈ë  ¦ Ē〉,1]. 

As these are also ë p  ë∩ and 〈ë∩〉∈[Ρ p,1] of which ë p ≡ m=1,m(ëmp), Ρ p ≡ ρ〈ë p ¦ Ē〉, ëmp ≡ ⎨X∈Rμ〈p,m〉⎬m with 
{μ pm; m=1,m} the p-th of the m! permutations of {m=1,m}. 

If the {ë p; p=1,m!} could be concomitant (i.e. joined) and independent, as indicated by p=1,m!(ë p) and 〈ë p; p=1,m!〉, then it 
could be considered p=1,m!(ë p  ë∩) which would allow to establish ë p  ë∩ of which p ≡ {p⏐Ρ p = max〈Ρ p; p=1,m!〉} and that 
on the basis of (28) would allow to deduce 〈ë∩〉∈[ρ〈ë p ¦ Ē〉,1] if 〈Ē〉. 

However B〈Ē〉, {ë p ⊆ Ē; p=1,m!} and second of (20) imply that the said concomitance not is representable by p=1,m!(ë p), but 
must instead be represented by ∩p=1,m!(ë p). Moreover B〈Ē〉, {ë p ⊆ Ē; p=1,m!} and first of (18) imply ¬ 〈ë p; p=1,m!〉. Lastly, on 
the base of (13) and second of (37), is deducible the equivalence between ∩p=1,m!(ë p) and m=1,m(ë∩m), and thus the concomitance 
in question is discretionally eliminable by means of the reduce the complexity of the first to the only and mere second.  

For these reasons is excluded p=1,m!(ë p  ë∩) and is instead admitted p=1,m!(ë p  ë∩).  Hence, corresponding 〈ë∩〉∈[Ρ p,1] 
to each ë p  ë∩, is had p=1,m!( 〈ë∩〉∈[Ρ p,1]). From: second of (9); 〈ë∩〉∈[0,1], Ρ p∈[0,1]; k=1,k(B∈Ak) ≡ B∈∩k=1,k(Ak); follows 
 

p=1,m!( 〈ë∩〉∈[Ρ p,1]) → ¬ p=1,m!(¬ 〈ë∩〉∈[Ρ p,1]) ≡ ¬ p=1,m!( 〈ë∩〉∈[0,Ρ p)) ≡ ¬ 〈ë∩〉∈∩p=1,m!([0,Ρ p)) ≡ ¬ 〈ë∩〉∈[0,Ρ P) ≡ 

〈ë∩〉∈[Ρ P,1] 
 
of which P ≡ {p⏐Ρ p = min〈Ρ p; p=1,m!〉}. 

Therefore in what follows it is implied that ë , in order to obtain 〈ë∩〉∈[Ρ P,1] i.e. ρ〈ë P ¦ Ē〉 ≤ 〈ë∩〉, is replaced by ë P. 
Hence Æ〈 m=1,m(¬ëm)⏐ ë 〉 (for which is applied to m=1,m(¬ëm) the replacement analogous to that just said for ë ) and first of (8) 
imply that ¬ë  is replaced by ¬ë P of which ¬ë p ≡ m=1,m(¬ëmp), P ≡ {p⏐Ρ p

¬ = min〈Ρ p
¬; p=1,m!〉}, Ρ p

¬ ≡ ρ〈¬ë p ¦ Ē〉, and 
therefore that ë  is replaced by ë P. 

Coherently with last of (24) is had Ρ P = 1 − Ρ P
¬ of which Ρ p ≡ ρ〈ë p ¦ Ē〉, ë p ≡ m=1,m(ëmp). This and the being Ρ P

¬ a mini-
mum imply that Ρ P is a maximum and hence give rise to P ≡ {p⏐Ρ p = max〈Ρ p; p=1,m!〉}. In the same way from (24) and second 
of (8) follows Ρ P = 1 − Ρ P

¬ of which Ρ p
¬ ≡ ρ〈¬ë p ¦ Ē〉, ¬ë p ≡ m=1,m(¬ëmp). This and the being Ρ P a minimum imply that Ρ P

¬ 
is a maximum and hence give rise to P ≡ {p⏐Ρ p

¬ = max〈Ρ p
¬; p=1,m!〉}.  

The ë  ⊆ ë  (said in (53) occasion) entails Ρ P ≤ Ρ P. This and the being Ρ P a minimum entail Ρ P ≤ Ρ P. This does not contra-
dict the ë  ⊆ ë  that is had with the said replacements of ë  with ë P and ë  with ë P. 

Being therefore conserved the properties of {ë ,ë } by its implicit substitution with {ë P,ë P}, (54) and (55) are replaced by 
 
ρ〈ë  ¦ Ē〉 = Πm=1,m(ρ〈⎨X∈Rμ〈P,m〉⎬m ¦ ēm〉)             ρ〈ë  ¦ Ē〉 = 1 − Πm=1,m(ρ〈⎨X∈¬Rμ〈P,m〉⎬m ¦ ēm〉) (58)

 
where P and P are respectively a p that minimizes Πm=1,m(ρ〈⎨X∈Rμ〈p,m〉⎬m ¦ ēm〉) and Πm=1,m(ρ〈⎨X∈¬Rμ〈p,m〉⎬m ¦ ēm〉). 

Is placed ë∪ ≡ ⎨X∈∪m=1,m(Rm)⎬. From: second of (38), (8); substitution of Rm whit ¬Rm in ¬ë∩  ¬ë  (due to ë   ë∩ and 
(3)); (8); follows ë∪ ≡ ¬⎨X∈∩m=1,m(¬Rm)⎬  ¬ m=1,m(¬ëm) ≡ ë . The ë∪  ë  is the (3.1.21) of [1] and is implied also by (3) and 
¬ë   ¬ë∪ which is deduced analogously to ë   ë∩. 

The ∩m=1,m(¬Rm) ≠ ∅ of ¬ m=1,m(⎨X∈¬Rm⎬m) ≡ ë  (analogous to ∩m=1,m(Rm) ≠ ∅ of ë ) is equivalent, for (8), to the need to 
imply ∪m=1,m(Rm) ≠ ¬∅ inherent to ë , but this condition is obviously always obtained because ¬∅ is the set that contains each set. 

The name (and hence properties) of a 〈ë 〉 is the addition of the names of the elements of such m-tuple. The (53) show 
ë  = ë  + E such that an m-tuple 〈E〉 may be contradictory because it can happen that some names of its m elements affirm and the 
remaining deny that X falls into a certain Rm. This entails that such 〈E〉 can not imply a 〈ë∪〉, and then highlights the erroneous-
ness of ë   ë∪ which, on the basis of (38), (8) and (3), would be tantamount to ë∩  ë . 

The {Ë k; k=1,k}, of which Ë k ≡ m=1,m(⎨X∈Rmk⎬m) and ∩m=1,m(Rmk) = ∩m=1,m(Rm), verify, analogously to ë  of which are speci-
fications, {Ë k ⊆ Ē,Ë k  ë∩; k=1,k}. However is not accepted on the basis of (21) ∪Ë   ë∩ (nor ∪Ë  ≡ ë∩) of which 
∪Ë  ≡ ∪k=1,k(Ë k), because, being also 〈∪Ë 〉 an m-tuple element of Ē, not subsists necessarily the inherent specification of E3 that 
is the condition for which the properties of each 〈∪Ë 〉, determined by considering all the {Ë k; k=1,k}, they agree in implying a 

〈ë∩〉. These ∪Ë   ë∩ and ∪Ë  ≡ ë∩ are not accepted also because for the {Ë k ; k=1,k} we have the evident considerations analo-
gous to those which above have induced to neglect p=1,m!(ë p) and consider p=1,m!(ë p). Furthermore the {Ë k  ë∩; k=1,k} high-
light that ë   ë∩ and (21) are not sufficient for ë  ≡ ë∩ since it is not obtainable true the specification of E2. 

The ¬ë   ¬ë∪ and (21) are not sufficient for ¬ë  ≡ ¬ë∪, since a single m=1,m( mm
¬)  ¬ë∪, of which { mm

¬ ≡ ēm; ∀m ≠ m} 
and mm

¬ ≡ ¬ë∪, is enough to prevent the specification of E2, noting in this regard also that a ¬ë  ∪ m=1,m( mm
¬)  ¬ë∪ is pre-

vented by the absence of the specification of E3. 
From ë   ë∩ is deduced (for (28) and if 〈Ē〉) ρ〈ë  ¦ Ē〉 ≤ 〈ë∩〉, but not is had an analogous of (28) for deducing from 

ë∪  ë  an upper bound of 〈ë∪〉. However even this limitation can be achieved as follows. The ¬ë   ¬ë∪ entails, for (28) and 
if 〈Ē〉, ρ〈¬ë  ¦ Ē〉 ≤ 〈¬ë∪〉. This, for last of (24), is equivalent to 1 − ρ〈ë  ¦ Ē〉 ≤ 1 − 〈ë∪〉 that shows 〈ë∪〉 ≤ ρ〈ë  ¦ Ē〉. There-
fore they are had both the ρ〈ë  ¦ Ē〉 = 1 − ρ〈¬ë  ¦ Ē〉 ≤ 〈ë∩〉 and 〈ë∪〉 ≤ ρ〈ë  ¦ Ē〉 = 1 − ρ〈¬ë  ¦ Ē〉. 

Specifying in these ë  and ë  as the respective ë R and ë R of which ë R ≡ m=1,m(⎨X∈Am⎬m), ∩m=1,m(Am) = R, 
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ë R ≡ m=1,m(⎨X∈Bm⎬m), ∪m=1,m(Bm) = R, the ë∩ and ë  are specified, on the basis of e ≡ ⎨X∈R⎬ ≡ ⎨ë∩⏐∩m=1,m(Rm) = R⎬ ≡  
⎨ë∪⏐∪m=1,m(Rm) = R⎬, both by e, following 
 
ρ〈ë R ¦ Ē〉 = 1 − ρ〈¬ë R ¦ Ē〉 ≤ 〈e〉 ≤ ρ〈ë R ¦ Ē〉 = 1 − ρ〈¬ë R ¦ Ē〉 (59)

 
which has 〈Ē〉 as sufficient condition, of which by (8) is had ¬ë R ≡ m=1,m(⎨X∈¬Am⎬m) and ¬ë R ≡ m=1,m(⎨X∈¬Bm⎬m), of which 
by (8) is had ∪m=1,m(¬Am) = ∩m=1,m(¬Bm) = ¬R, and which results therefore coherent with (8.4) and (8.5) of [1] if is considered that 
in how much moment ago the use of Am is equivalent to using ¬Am. 

The ¬Ē ≡ m=1,m(¬ēm) and the fact that ¬ēm does not affect by no means X imply that no relation between ¬Ē and e can be im-
plicated from their properties. Therefore, on the base of the last paragraph of section 2.2 and meaning ρA = ρ〈ë R ¦ Ē〉 and 
ρB = ρ〈ë R ¦ Ē〉, (59) can be written as ρA ≤ P〈e〉 ≤ ρB, of which ρA ≤ ρA ≤ ρA and ρB ≤ ρB ≤ ρB because  ρA and ρB are variables de-
pendent on choice of the respective  {Am; m=1,m} and {Bm; m=1,m} which moreover, as shown by ∩m=1,m(Am) = ∪m=1,m(Bm) = R, 
are different in the sense that always verify {Am; m=1,m}  {Bm; m=1,m} with the single exception of the case 
{Am = Bm = R; m=1,m}. 

The ρA = ρ〈ë R ¦ Ē〉 and first of (58) entail ρA = Πm=1,m(ρ〈⎨X∈Aμ〈Q,m〉⎬m ¦ ēm〉) where Q is a p that minimizes 
Πm=1,m(ρ〈⎨X∈Aμ〈p,m〉⎬m ¦ ēm〉).  This, ∩m=1,m(Am) = R, ρ〈ëm ¦ ēm〉 = N〈ëm〉 / N〈ēm〉 (due to second of (24)) and the being N〈ëm〉 growing 
with the extension of Rm (due to first of (37)), )), ⎨X∈R⎬ ≡ e e ⎨X∈ ⎬ ≡ ē entail 
 
ρA = {Πm=1,m(ρ〈⎨X∈Aμ〈Q,m〉⎬m ¦ ēm〉)⏐Am = R; m=1,m} = Πm=1,m(ρ〈em ¦ ēm〉) 

ρA = {Πm=1,m(ρ〈⎨X∈Aμ〈Q,m〉⎬m ¦ ēm〉)⏐{Am = ; ∀m ≠ M},AM = R} = ρ〈eM ¦ ēM〉 (60)
 
of which M ≡ {m⏐ρ〈em ¦ ēm〉 = min〈ρ〈em ¦ ēm〉; m=1,m〉}. 

The ρB = ρ〈ë R ¦ Ē〉 and second of (58) entail ρB = 1 − Πm=1,m(ρ〈⎨X∈¬Bμ〈Q,m〉⎬m ¦ ēm〉) where Q is a p that minimizes 
Πm=1,m(ρ〈⎨X∈¬Bμ〈p,m〉⎬m ¦ ēm〉). This, ∩m=1,m(¬Bm) = ¬R and last of (24) entail 
 
ρB = 1 − {Πm=1,m(ρ〈⎨X∈¬Bμ〈Q,m〉⎬m ¦ ēm〉)⏐{¬Bm = ; ∀m ≠ M},¬BM = ¬R} = 1 − ρ〈¬eM ¦ ēM〉 = ρ〈eM ¦ ēM〉 (61)

ρB = 1 − {Πm=1,m(ρ〈⎨X∈¬Bμ〈Q,m〉⎬m ¦ ēm〉)⏐¬Bm = ¬R; m=1,m} = 1 − Πm=1,m(ρ〈¬em ¦ ēm〉) = 1 − Πm=1,m(1 − ρ〈em ¦ ēm〉) 
 
of which M ≡ {m⏐ρ〈¬em ¦ ēm〉 = min〈ρ〈¬em ¦ ēm〉; m=1,m〉}≡ {m⏐ρ〈em ¦ ēm〉 = max〈ρ〈em ¦ ēm〉; m=1,m〉. 

The ë   ë∩ has the specification Ē  ē. The ¬Ē ≡ m=1,m(¬ēm) (that is had by (8)) and (14) show ¬∃{e ∪ Ē ≠ Ē⏐e  ē}. 
This and (21) give rise to ē ≡ Ē. 

This, 〈Ē〉 → {ρA ≤ P〈e〉 ≤ ρB},  ρA ≤ ρA ≤ ρA, ρB ≤ ρB ≤ ρB, (60) and (61) entail 
 

〈Ē〉 ≡ 〈ē〉→ {ρ〈eM ¦ ēM〉 ≤ P〈e〉 ≤ ρ〈eM ¦ ēM〉} (61)
 

From: (52) → {ē  ē } (and (3)); follows 
 

{ē ≡ ē } → ¬(52) → ¬{ē ≡ Ē} 
 
that, by (3), implies 
 

{ē ≡ ē } ≡ {ē ≡ ē ⏐ē  Ē}             {ē ≡ Ē} ≡ {ē ≡ Ē⏐ē  ē }  
 

These respectively show that is had {ē ≡ ē } only if ē  Ē (i.e. only if is ignored Ē) and {ē ≡ Ē} only if ē  ē  (i.e. only if is ig-
nored ē ). Nevertheless, as said in occasion of (17), the ignore an event is not a logical error. Thus (51) and (61) are both valid and 
differ only because deduced with different argumentations. 

So ultimately, the appear in both the (51) and (61) the same true P〈e〉 and K = Σm=1,m(nm⋅K) / Σm=1,m(nm) imply 
Σm=1,m(nm⋅ρ〈eM ¦ ēM〉) ≤ Σm=1,m(nm⋅ρ〈em ¦ ēm〉) ≤ Σm=1,m(nm⋅ρ〈eM ¦ ēM〉) which, being evidently true, confirms (51) inasmuch vice versa 
would be erroneous some part of the previous argumentation and hence it could be erroneous also the same (51). 
 
 
4  THE CALCULATION OF THE CONFIDENCE INTERVAL 
 

The set R, of which the e ≡ ⎨X∈R⎬ treated in section 3, has been defined by the only R ⊆ , therefore is had its R ≡ i=1,i(Ii) of 
which Ii ≡ [Ai,Bi]  where “[Ai” and “Bi]” can be substitued by the respective “(−∞” and “∞)”. Such R is a zone of the real line (an 
interval if i = 1) of confidence P〈e〉 (expressed in (47)) for the unknown constant X.  

The calculation of P〈e〉 can take place by means of (47) only if it is known every ρ〈et ¦ ēt〉 of which ēt∈I. In order to achieve 
this necessary condition it is sufficient to know the functions 
 

{at(A,B),bt(A,B),D〈st〉(x); t=1,t} (62)
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such as to verify 
 

⎨A ≤ X ≤ B⎬t ≡ ⎨at(A,B) ≤ st ≤ bt(A,B)⎬             ēt ≡ ⎨st∈ ⎬ (63)
 
that, in conformity to (41) and (40), have as a necessary condition 
 

{¬{M〈sA∈ 〉 ⊆ M〈sB∈ 〉}; ∀{(A,B)⏐{A,B} ⊆ {t=1,t}}} (64)
 

Indeed from: (24), et ⊆ ēt; R ≡ i=1,i(Ii), second of (37); first of (20), second of (12), Ii ≡ [Ai,Bi]; (63); (25); follows (coherently 
with (4.2.19) of [1]) 
 
ρ〈et ¦ ēt〉 = N〈et〉 / N〈ēt〉 = N〈M〈 i=1,i(⎨X∈Ii⎬t)〉〉 / N〈ēt〉 = Σi=1,i(N〈M〈⎨Ai ≤ X ≤ Bi⎬t〉〉 / N〈ēt〉) =  

Σi=1,i(N〈M〈at(Ai,Bi) ≤ st ≤ bt(Ai,Bi)〉〉 / N〈M〈st∈ 〉〉) = Σi=1,i(∫〈at(Ai,Bi),bt(Ai,Bi)〉(D〈st〉(x)⋅dx)) (65)
 
and thus (62) allows to know each ρ〈et ¦ ēt〉 by means of (65). 

This and the deduce ē  ≡ ŝ  of which ŝ  ≡ t=1,t(st∈ ), from ē  ≡ t=1,t(ēt) (in (42)) and second of (63), allow to write (47) as 
 

〈ŝ 〉 → {P〈e〉 = t−1⋅Σt=1,t(Σi=1,i(∫〈at(Ai,Bi),bt(Ai,Bi)〉(D〈st〉(x)⋅dx)))} (66)
 
for which is sufficient to know (62) of which (63) which is worth only if subsists (64). 

The P〈e〉 is the true probability of e in front of its alternatives merely conventional, but its calculation by means of (66), as is 
found at least in the cases considered, is prevented by the excessive greatness of t i.e. N〈I〉, following that in practice (66) must be 
used replacing its I with a conventional IC of which IC ⊂ I and then being able to evaluate not P〈e〉 but a its conventional approxi-
mation C〈e〉 that improves with increasing of N〈IC〉. In what follows this substitution operative of I and P〈e〉 with IC and C〈e〉 is 
implicit, noting in particular that, in this use of (66), the greatness of N〈IC〉 and the treat numbers floating point make it convenient 
appropriate precautions as the Kahan summation algorithm which may be written as follows in a pseudolanguage derived from the 
Visual Basic 

 
Function SOMMA(Ai; i=1,i) 
Dim S, C, T, Y As Double 
C = 0 
S = 0 
  For i = 1 To i 
     Y = Ai − C 
     T = S + Y 
     C = T − S  −  Y 
     S = T 
  Next 
  Return S 
 End Function 
 

with this Function that returns Σi=1,i(Ai). 
For such a use of (66) specifically inherent the cases (of great importance in the experimental sciences) that X is the mean o vari-

ance of a normal (i.e. Gaussian) random variable, are below reported some PDF functions that specify the Ds(x) of (25) and whose 
analytical deduction is referred in section 6 of [1]. In that regard is had {D〈a〉 ≡ D〈b〉} ≡ {a ≡ b}. 

A normal random variable g, with mean Mg and variance V2, and the standard normal random variable Z  have 
 

D〈g〉(x) ≡ G〈Mg,V2〉(x) ≡ (2⋅π⋅V2)−0.5⋅exp〈−0.5⋅(x − Mg)2/V2〉          D〈Z〉(x) ≡ Z(x) ≡ G〈0,1〉(x) ≡ (2⋅π)−0.5⋅exp〈−0.5⋅x2〉 
 
of which 〈x〉 = 〈g〉 = 〈Z〉 = , V > 0 and exp〈Ş〉 ≡ ℮Ş (with ℮ the Napier's or Euler's constant). 

In relation to these g and Z is had 
 

∫a,b(G〈Mg,V2〉(x)⋅dx) = ∫〈(a−Mg)/V,(b−Mg)/V〉(Z(x)⋅dx) 
 
whose second member is calculable specifying the last equation of (25), using the relation said in [18] between a ∫−∞,c(Z(x)⋅dx) and 
the incomplete gamma function, and calculating this  with the algorithm exposed in [19]. 

With reference to section 4.1 of [1], a sample  of a population  is random if each 〈 〉 is determined when each 〈 〉 has the 
same probability to have such determination. 

Is intended that 〈x〉, with x a set of k quantities of which x ≡ {xk; k=1,k}, means that such quantities are independent i.e. that 
〈xk〉 is not modified by any (k − 1)-tuple of values that can respectively have the remaining {xk; k ≠ k; k=1,k}. 
A S ≡ {Sk; k=1,k}, of which D〈Sk〉 ≡ D〈S〉, implies that S can be indifferently considered a set of k random variables that have as 
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PDF the same D〈S〉(x) or k values of the same S. And if in the second case is had 〈S〉, S becomes evident as a random sample of the 
population of all values of S (which is obviously different from its subset 〈S〉). 

By placing g ≡ {ga; a=1,a}, 〈g〉, D〈ga〉 ≡ G〈Mg,V2〉 and intending m〈g〉 = Σa=1,a(ga) / a, is had the random variable z of which 
 

D〈z〉 ≡ Z          z = a0.5⋅(mg − Mg) / V (67)
 

A χ2 (chi-square) random variable with ν degrees of freedom has 
 

D〈χ2〉(x) ≡ X〈ν〉(x) ≡ (2ν/2⋅Γ(ν/2))−1⋅xν/2−1⋅exp〈−0.5⋅x〉 
 
where 〈x〉 = 〈χ2〉 = [0,∞), ν is a natural number greater than 0, Γ(α) is the gamma function defined by Γ(α) ≡ ∫0,∞(tα−1⋅℮−t⋅dt), 

〈α〉 = (0,∞). In order to calculate a ∫−∞,a(X〈ν〉(x)⋅dx) (and make (25) useful as just said) is indicated the algorithm in [18]. 
A T (Student's t) random variable with ν degrees of freedom is defined by a T = Z / (χ2 / ν)0.5 of which 〈Z,χ2〉 and has 

 
D〈T 〉(x) ≡ T〈ν〉(x) ≡ (π⋅ν)−0.5⋅Γ−1(ν / 2)⋅Γ((ν + 1) / 2)⋅(1 + x2 / ν)−(ν+1)/2 (68)

 
of which 〈x〉 = 〈T 〉 = . To calculate a ∫−∞,a(T〈ν〉(x)⋅dx) is referred the algorithm in [18]. 

The number of all the different partitions of a set of k elements is equal to the k-th Bell number (of which [9], [10], [20]) that is 
indicated 〈k〉. For the determination of such partitions is referred the algorithm in [20]. 

Is placed g ≡ {ga; a=1,a} of which a > 1, 〈g〉, D〈ga〉 ≡ G〈Mg,V2〉, thus is had {g ≡ g}  {g  g} and 
 

{g = {gph; h=1,hp}; p=1, 〈a〉} (69)
 
where {gph; h=1,hp} is the p-th partition of g with gph ≡ {gphk; k=1,kph}, and of which is placed h1 = a, h 〈a〉 = 1. 

In this regard is had (coherently with (6.3.26) of [1]), for hp > 1 i.e. p < 〈a〉, D〈D2
p / V2〉 ≡ X〈hp − 1〉 of which 

D2
p = Σh=1,h〈p〉(kph⋅(mg〈p,h〉 − mg)2) and, for hp < a i.e. p > 1, D〈D2

p / V2〉 ≡ X〈Ňp〉 of which D2
p = Σh=1,h〈p〉(Σk=1,k〈p,h〉((gphk − mg〈p,h〉)2)), 

Ňp = Σh=1,h〈p〉(kph − 1). This is written 
 

{D〈D2
p / V2〉 ≡ X〈hp − 1〉, D〈D2

p / V2〉 ≡ X〈Ňp〉; p=2, 〈a〉 − 1}          D〈D2
1 / V2〉 ≡ D〈D2

〈a〉 / V2〉 ≡ Σa=1,a((ga − mg)2) ≡ X〈a − 1〉 
 
i.e. 
 

{D〈D2
q / V2〉 ≡ X〈νq〉; q=1,2⋅ 〈a〉 − 3} (70)

 
of which 
 

{D2
1,ν1} ≡ {Σa=1,a((ga − mg)2),a − 1}          {{D2

q,νq} ≡ {D2
q,hq − 1}; q=2, 〈a〉 − 1} 

{{D2
q,νq} ≡ {D2

p〈q〉,Ňp〈q〉}; q= 〈a〉,2⋅ 〈a〉 − 3}          pq ≡ q − 〈a〉+2 (71)
 
4.1  The mean of a normal random variable 
 

From the previous definitions of random variables is deduced (with particular reference to (68), (67) and (70)) 
 

D〈tq〉 ≡ T〈νq〉          tq = z / ((D2
q / V2) / νq)0.5 = (mg − Mg) / wq          wq = (D2 q/ (νq⋅a))0.5 (72)

 
Is called G the set of all combinations of the elements of g and so is placed G ≡ {Gu; u=1,u} of which Gu ≡ {Gua; a=1,au}, 

u = Σk=1,a(Б〈a,k〉). Is called G the set of all combinations of class greater than 1 of the elements of g and so is placed G ≡ {Gu; u=1,u} 
of which Gu ≡ {Gua; a=1,au}, u = Σk=2,a(Б〈a,k〉) = u − a. 

As (69) is had also 
 

{Gu = {Guph; h=1,hup}; p=1, 〈au〉} 
 
where {Guph; h=1,hup} is the p-th partition of Gu with Guph ≡ {Guphk; k=1,kuph}, and of which is placed hu1 = au, hu 〈a〈u〉〉 = 1. 

The (72) remains valid also if its g and g are replaced by respective Gu and Gu of which {Gu ≡ Gu}  {Gu  Gu}. Such a substitution 
in (72) entails the replacement of {mg,a} with one of the {{mG〈u〉,au}; u=1,u} and the replacement of {D2

q,νq} with a {D2
uq,νuq} 

where u refers Gu and is had q∈{q=1,2⋅ 〈au〉 − 3} analogously to q∈{q=1,2⋅ 〈a〉 − 3} of (70). 
Therefore the set of all these substitutions can be indicated {{mG〈u〉,au,D2

uq,νuq}; q=1,qu; u=1,u; u=1,u} of which qu = 2⋅ 〈au〉 − 3, 
and the (q,u,u)-th element of such set of Ng substitutions, of which Ng = 2⋅u⋅Σu=1,u( 〈au〉) − 3⋅u⋅u, gives rise to 
 

D〈tuuq〉 ≡ T〈νuq〉          tuuq = (mG〈u〉 − Mg) / wuuq          wuuq = (D2
uq / (νuq⋅au))0.5 (73)
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of which is had, as (71), 
 

{D2
u1,νu1} ≡ {Σa=1,a〈u〉((Gua − m〈Gu〉)2),au − 1}          {{D2

uq,νuq} ≡ {D2
uq,huq − 1}; q=2, 〈au〉 − 1} 

{{D2
uq,νuq} ≡ {D2

up〈uq〉,Ňup〈uq〉}; q= 〈au〉,2⋅ 〈au〉 − 3}          puq ≡ q − 〈au〉+2 (74)
 
where 
 
D2

uq = Σh=1,h〈uq〉(kuqh⋅(mG〈uqh〉 − mG〈u〉)2)          D2
up = Σh=1,h〈up〉(Σk=1,k〈uph〉((Guphk − mG〈uph〉)2))          Ňup = Σh=1,h〈up〉(kuph − 1) 

 
The second of (73) entails that A ≤ Mg ≤ B is equivalent to mG〈u〉− B ≤ tuuq⋅wuuq ≤ mG〈u〉 − A. Therefore is had 

 
⎨A ≤ Mg ≤ B⎬uuq ≡ ⎨αuuq(A,B) ≤ tuuq ≤ βuuq(A,B)⎬          ⎨Mg∈ ⎬uuq ≡ ⎨tuuq∈ ⎬ (75)

 
of which αuuq(A,B) ≡ (mG〈u〉− B) / wuuq, βuuq(A,B) ≡ (mG〈u〉− A) / wuuq. 

Placing A = mG〈u〉 − K and B = mG〈u〉 + K with K > 0, is had αuuq(A,B) ≡ − K / wuuq and βuuq(A,B) ≡ K / wuuq. This implies the 
 

⎨⏐Mg − mG〈u〉⏐ ≤ K⎬ ≡ ⎨mG〈u〉 − K ≤ Mg ≤ mG〈u〉 + K⎬ ≡ ⎨ − K / wuuq ≤ tuuq ≤ K / wuuq⎬ (76)
 

⎨mG〈u〉 − K⋅wuuq ≤ Mg ≤ mG〈u〉 + K⋅wuuq⎬ ≡ ⎨− K ≤ tuuq ≤ K⎬ (77)
 
which, by means of (27), (25) and second of (75), allow respectively, when 〈tuuq∈ 〉, to calculate the probability of 
⎨⏐Mg − mG〈u〉⏐ ≤ K⎬ (where ⏐Mg − mG〈u〉⏐ can be considered the error that occurs in replacing Mg with mG〈u〉) and to determine an in-
terval that contains Mg with probability arbitrarily established through K. 

Intending Æ〈vvz⏐ uuq⏐ {v ≠ u} {v ≠ u} {z ≠ q}〉, from: þ; (25); follows 
 

{⎨tvvz∈ ⎬ ≡ ⎨tuuq∈ ⎬} ≡ {⎨a ≤ tvvz ≤ b⎬ ≡ ⎨a ≤ tuuq ≤ b⎬} → {∫a,b(D〈tvvz〉(x)⋅dx) = ∫a,b(D〈tuuq〉(x)⋅dx)} 
 
but the last member of this is false and thus, by (3), is such also the first member. This implies M〈tvvz∈ 〉 ∩ M〈tuuq∈ 〉 = ∅ be-
cause vice versa there would be an impossibility to justify such as that of the x-th paragraph of page x, hence is had 
 

¬{M〈tvvz∈ 〉 ⊆ M〈tuuq∈ 〉} (78)
 

Is placed t ≡ u=1,u( u=1,u( q=1,q〈u〉(tuuq∈ ))). The last two of (73) imply ⎨tuuq∈ ⎬ ≡ ⎨mG〈u〉∈ ⎬  ⎨D2
uq ∈[0,∞)⎬. These 

⎨mG〈u〉∈ ⎬ and ⎨D2
uq ∈[0,∞)⎬ happen if are known g and g (i.e. are known their a and a elements). Therefore this condition and the 

intention of consider with equal probability one of the Ng events that define t are sufficient for 〈t〉. 
The {αuuq(A,B),βuuq(A,B),D〈tuuq〉(x); q=1,qu; u=1,u; u=1,u}, (75), (78) and Mg are specifications of (62), (63), (64) and X, follow-

ing that (66) can, coherently with x-th paragraph of page x, be specified by the second relation of the 
 

{g and g are known} → 〈t〉 → { C〈Mg∈R〉 = Ng
 −1⋅Σu=1,u(Σu=1,u(Σq=1,q〈u〉(Σi=1,i(∫〈αuuq(Ai,Bi),βuuq(Ai,Bi)〉(T〈νuq〉(x)⋅dx)))))} (79)

 
of which Æ〈Ng⏐ N〈IC〉〉 and whose first relation is due to consider implicit the intention said in the penultimate paragraph. 

As (47) is related to (79), (48) is inherent to 
 

{g and g are known} → 〈t〉 → u=1,u( u=1,u( q=1,q〈u〉(ρ〈⎨Mg∈R⎬uuq ¦ ⎨Mg∈ ⎬uuq〉 = 〈⎨Mg∈R⎬uuq〉 ≤ 〈Mg∈R〉))) (80)
 
where each 〈⎨Mg∈R⎬uuq is known and which shows as, in absence of (79), it would only possible replace 〈Mg∈R〉 with a 

〈⎨Mg∈R⎬uuq〉 or choose a 〈⎨Mg∈R⎬uuq〉 ≤ 〈Mg∈R〉 among the many, but, so, having to make, in both cases, a choice unjustifi-
able. 

Indeed such a choose might follow from considering that (74) shows that 
 

Gu ≡ g          {D2
uq,νuq} ≡ {Σa=1,a((ga − mg)2),a − 1} (81)

 
entails a greater νuq⋅au, and that third of (73) and (75) show that a greater νuq⋅au implies generally a greater 〈⎨A ≤ Mg ≤ B⎬uuq〉. Ho-
wever a probability is not more reliable just because is greater and thus there is no reason to prefer the 〈⎨A ≤ Mg ≤ B⎬uuq〉 identified 
by (81). 

Instead (74) and third of (73) show (81) convenient when is not about choose (as just said) between several probability of a 
same event, but between the events defined by (76) and (77), since it is clear that (81) generally in these cases entails respectively 
the greater 〈⏐Mg − mG〈u〉⏐ ≤ K〉 and the wider interval between those which have equal probability of containing Mg. This is con-
firmed by the law of large numbers (of which also in section 5.3.1 of [1]) that affirms 
 

lima→∞( 〈⏐mg − Mg⏐ >0 〉) = 0 
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for which generally the increase of a entails a mg more approximate to Mg and thus a greater 〈⏐Mg − mG〈u〉⏐ ≤ K〉. 
Intending {şn; n=1,Ng} ≡ {şuuq; q=1,qu; u=1,u; u=1,u}, for a C-th linear combination TC of {tn; n=1,Ng} defined by non negative 

arbitrary constants {λCn; n=1,Ng}, is had TC ≡ Σn=1,N〈gg〉(λCn⋅tn) = hC − kC⋅Mg of which hC ≡ Σn=1,N〈gg〉(λCn⋅mG〈n〉 / wn), 
kC ≡ Σn=1,N〈gg〉(λCn / wn). A linear combination of random variables is a further random variable whose PDF is always calculable with 
general methods like those of section 5.2 of [1] or more efficiently with methods which are specific to the given random variables. 
Is deduced ⎨A ≤ Mg ≤ B⎬C ≡ ⎨hC − kC⋅B ≤ TC ≤ hC − kC⋅A⎬ and hence relations analogous to (75). Moreover for two random variables TA 
and TB, also they linear combinations as TC, is deduced a relation analogous to (78). Finally what has been just said can be reiterated 
adding variables of type TC to variables of which are considered the linear combinations. It is therefore evident how, without having 
to consider other variables, the number of variables of (79) (i.e. the specification of N〈IC〉) can be increased unlimitedly, following 
evident also the necessity (said in the x-th paragraph of page x) of replace the true P〈Mg∈R〉 with a probability conventional as the 

C〈Mg∈R〉 of (79). 
The numerosity of population of all values of g is unlimited in consequence (with reference to section 4 of [1]) of the continuity 

of D〈g〉, following that is unlimited also the number of samples of such population. This and the being g one of these samples im-
ply that is unlimited the number of cases as (75) and among which there are relations as (78). Is therefore evident an other reason 
which makes unlimited the numerosity of the present specification of I and that makes of consequence necessary the substitution of 
P〈Mg∈R〉 with a probability conventional. 

Coherently with what just said, generally (79) makes a better approximation of P〈Mg∈R〉 if has a greater N〈g〉 that implies a 
greater Ng (of which Æ〈Ng⏐ N〈IC〉〉) and thus a better substitution of type said in the x-th paragraph of page x. 

Concluding this section is noted incidentally that a ≠ b (which implies Ga ≠ Gb) and 〈Gu〉∈  (due to 〈g〉) show 〈mG〈a〉,mG〈b〉〉 and 
thus 〈tacd,tbcd〉, and that instead 〈wuuq〉 = [0,∞) shows that from tuuq ≥ 0 follows tuef ≥ 0, following ¬ 〈tuuq,tuef〉 because 

〈tuef〉 = . 
 
4.2  The variance of a normal random variable 
 

In relation to ĝ ≡ {ĝa; a=1,â}, 〈ĝ〉, D〈ĝa〉 ≡ G〈Mĝ,Vĝ2〉, ĝ ≡ {ĝa; a=1,â}, 〈ĝ〉, D〈ĝa〉 ≡ G〈Mĝ,Vĝ2〉, is had, coherently with (6.2.29) of 
[1], 
 

〈m〈ĝ〉,m〈ĝ〉〉 → {D〈(mĝ − mĝ + Mĝ − Mĝ) / (Vĝ2 / â + Vĝ2 / â)0.5〉 = Z} 
 

This, considering that in relation to G ≡ {Gu; u=1,u} of section 4.1 is had 〈Gu〉 (due to 〈g〉), D〈 〈Gu〉〉 ≡ G〈Mg,V2〉 and (as said in 
section 4.1) 〈mG〈a〉,mG〈b〉〉, implies D〈(mG〈a〉 − mG〈b〉) / (V2 / aa + V2 / ab)0.5〉 ≡ Z. This, {D〈s〉 ≡ Z} ≡ {s ≡ Z} and D〈Z2〉(x) = x−0.5⋅Z(x0.5) (of 
which 〈x〉 = 〈Z2〉 = [0,∞)) affirmed by (6.2.7) of [1], give rise to 
 

D〈z2
ab〉(x) = x−0.5⋅Z(x0.5) ≡ X〈1〉(x)      z2

ab = y2
ab / V2          y2

ab = (mG〈a〉 − mG〈b〉)2 / (aa
−1 + ab

−1) 
 
whose second entails that A ≤ V2 ≤ B (of which is implicit A ≥ 0) equates to y2

ab / B ≤ z2
ab ≤ y2

ab / A. Therefore is had 
 

⎨A ≤ V2 ≤ B⎬ab ≡ ⎨y2
ab / B ≤ z2

ab ≤ y2
ab / A⎬          ⎨V2∈[0,∞)⎬ab ≡ ⎨z2

ab∈[0,∞)⎬ (82)
 
of which {a,b}∈{{a,b}; b=a + 1,u; a=1,u − 1} (with u = Σk=1,a(Б〈a,k〉), a = N〈g〉 as in section 4.1) because {a,b} is one of the Б〈u,2〉 
combinations of class 2 of {u=1,u}. 

From Æ〈{D2
uq,νuq},(74)⏐ {D2

q,νq},(71)⏐ (70)〉 is deduced 
 

D〈z2
uq〉 ≡ X〈νuq〉          z2

uq = Duq
2 / V2 

 
whose second gives rise to 
 

⎨A ≤ V2 ≤ B⎬uq ≡ ⎨Duq
2 / B ≤ z2

uq ≤ Duq
2 / A⎬          ⎨V2∈[0,∞)⎬v ≡ ⎨z2

uq∈[0,∞)⎬ (83)
 
of which {u,q}∈{{u,q}; q=1,qu; u=1,u} with qu and u expressible as said in section 4.1 and being therefore {u,q} element of a set of 
numerosity Ng / u. 

The (82) and (83) give rise to 
 

⎨A ≤ V2 ≤ B⎬v ≡ ⎨αv(A,B) ≤ r2
v ≤ βv(A,B)⎬          ⎨V2∈[0,∞)⎬v ≡ ⎨r2

v∈[0,∞)⎬ (84)
 
of which αv(A,B) ≡ ψ2

v / B, βv(A,B) ≡ ψ2
v / A, 

 
{r2

v,ψ2
v; v=1,v} ≡ {{z2

ab,y2
ab; b=a + 1,u; a=1,u − 1},{z2

uq,Duq
2; q=1,qu; u=1,u}} 

 
with v = Б〈u,2〉 + Ng / u. This allows for V2 results analogous to those obtained for Mg at the x-th paragraph of page x. 

As (78) is deduced also 
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{¬{M〈r2
a∈ 〉 ⊆ M〈r2

b∈ 〉}; ∀a ≠ b} (85)
 

Is placed r ≡ v=1,v(r2
v∈[0,∞)). As for 〈t〉 in (79), also for 〈r〉 are deduced sufficient the knowledge of g and g and the inten-

tion of consider with equal probability one of the v events which define r. 
The {αv(A,B),βv(A,B),D〈r2

v〉(x); v=1,v}, (84), (85) and V2 are specifications of (62), (63), (64) and X, following that (66) can, co-
herently with the x-th paragraph of page x, be specified by the second relation of 
 

{g e g sono noti} → 〈r〉 → { C〈V2∈R〉 = v−1⋅Σv=1,v(Σi=1,i(∫〈αv(Ai,Bi),βv(Ai,Bi)〉(D〈r2
v〉(x)⋅dx)))} (86)

 
of which R ⊆ [0,∞) because D〈r2

v〉(x) is not defined for x∉[0,∞), and whose first relation is due to the just said intention. 
As (47) is related to (86), (48) is inherent to 

 
{g e g sono noti} → 〈r〉 → v=1,v( 〈⎨V2∈R⎬v〉 ≤ 〈V2∈R〉) (87)

 
where each 〈⎨V2∈R⎬v〉 is knowable and which shows as, in absence of (86), it would only possible replace 〈V2∈R〉 with a 

〈⎨V2∈R⎬v or choose a 〈⎨V2∈R⎬v〉 ≤ 〈V2∈R〉 among the many, but, so, having to make, in both cases, a choice unjustifiable. In-
deed also in this case a 〈⎨V2∈R⎬v〉 would not be made more reliable from the being generally greater. 

For a C-th linear combination R2
C of {r2

v; v=1,v} defined by non negative arbitrary constants {λCv; v=1,v}, is had 
R2

C ≡ Σv=1,v(λCv⋅r2
v) = hC

2 / V2 of which hC
2 ≡ Σv=1,v(λCv⋅ψ2

v), ⎨A ≤ V2 ≤ B⎬C ≡ ⎨hC
2 / B ≤ R2

C ≤ hC
2 / A⎬. Hence also in this case, as at x-th 

paragraph of page x, are deduced the possibility of increase unlimitedly the number of variables of (86) and the following necessity 
of replace P〈V2∈R〉 with a probability conventional as the C〈V2∈R 〉 of (86). In this regard are immediate the further considera-
tions analogous to those of the previous section and in particular how a greater N〈g〉 entails generally a better approximation of 
P〈V2∈R〉. 
 
 
CONCLUSION 
 

The utility of a probability consist ultimately in the being a measure of the possibility of happen an event and is obviously pre-
vented when coexist different probabilities of a same event among which is not possible identify one as the only totally reliable. 

A such impediment is typical in treating a confidence interval, as ascertained in sections 4.1 and 4.2 where is clear that, in ab-
sence of (79) and (86), there would be, in both cases and coherently with (80) and (87), an number unlimited of different and e-
qually reliable confidences, i.e. probabilities, of a same event. 

However in the usual treatments these difficulties are irrelevant because, among many equally reliable and generally different 
confidences, are considered only those deducible by the whole sample and is chosen one of these arbitrarily or because it is the 
only contingently calculable. At this regard is noted that the (8.5) of [1] does not constitute a definitive progress because of its cha-
racter substantially conventional. 

In consequence of this the essential purpose of this work has been contextualize and circumstantiate concepts and procedures 
with which to define and calculate a confidence as the only totally reliable. 

This aim has been achieved satisfyingly, because has been reached the (47) (i.e. (66)) where, as said in the x-th paragraph of 
page x, the searched confidence is expressed so that it, although not exactly calculable, is however unlimitedly approximable. 
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